Geocode and reverse geocode your data using, R, JSON and Google Maps’ Geocoding API

March 20, 2012
By

(This article was first published on All Things R, and kindly contributed to R-bloggers)

Geocode and reverse geocode your data using, R, JSON and Google Maps’ Geocoding API

To geocode and reverse geocode my data, I use Google’s Geocoding service which returns the geocoded data in a JSON. I will recommend that you register with Google Maps API and get a key if you have large amount of data and would do repeated geo coding.

Geocode:

getGeoCode <- function(gcStr)  {
  library(“RJSONIO”) #Load Library
  gcStr <- gsub(‘ ‘,’%20’,gcStr) #Encode URL Parameters
 #Open Connection
 connectStr <- paste(‘http://maps.google.com/maps/api/geocode/json?sensor=false&address=’,gcStr, sep=””) 
  con <- url(connectStr)
  data.json <- fromJSON(paste(readLines(con), collapse=””))
  close(con)
  #Flatten the received JSON
  data.json <- unlist(data.json)
  if(data.json[“status”]==”OK”)   {
    lat <- data.json[“results.geometry.location.lat”]
    lng <- data.json[“results.geometry.location.lng”]
    gcodes <- c(lat, lng)
    names(gcodes) <- c(“Lat”, “Lng”)
    return (gcodes)
  }
}
geoCodes <- getGeoCode(“Palo Alto,California”)
> geoCodes
           Lat            Lng 
  “37.4418834” “-122.1430195” 

Reverse Geocode:
reverseGeoCode <- function(latlng) {
latlngStr <-  gsub(‘ ‘,’%20’, paste(latlng, collapse=”,”))#Collapse and Encode URL Parameters
  library(“RJSONIO”) #Load Library
  #Open Connection
  connectStr <- paste(‘http://maps.google.com/maps/api/geocode/json?sensor=false&latlng=’,latlngStr, sep=””)
  con <- url(connectStr)
  data.json <- fromJSON(paste(readLines(con), collapse=””))
  close(con)
  #Flatten the received JSON
  data.json <- unlist(data.json)
  if(data.json[“status”]==”OK”)
    address <- data.json[“results.formatted_address”]
  return (address)
}
address <- reverseGeoCode(c(37.4418834, -122.1430195))
> address
                    results.formatted_address 
“668 Coleridge Ave, Palo Alto, CA 94301, USA” 

 Happy Coding!

To leave a comment for the author, please follow the link and comment on their blog: All Things R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Sponsors

Mango solutions



RStudio homepage



Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training

datasociety

http://www.eoda.de





ODSC

ODSC

CRC R books series





Six Sigma Online Training









Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)