Fastest Way to Add New Variables to A Large Data.Frame

October 30, 2016
By

(This article was first published on S+/R – Yet Another Blog in Statistical Computing, and kindly contributed to R-bloggers)

pkgs <- list("hflights", "doParallel", "foreach", "dplyr", "rbenchmark", "data.table")
lapply(pkgs, require, character.only = T)

data(hflights)

benchmark(replications = 10, order = "user.self", relative = "user.self",
  transform = {
    ### THE GENERIC FUNCTION MODIFYING THE DATA.FRAME, SIMILAR TO DATA.FRAME() ###
    transform(hflights, wday = ifelse(DayOfWeek %in% c(6, 7), 'weekend', 'weekday'), delay = ArrDelay + DepDelay)
  },
  within    = {
    ### EVALUATE THE EXPRESSION WITHIN THE LOCAL ENVIRONMENT ###
    within(hflights, {wday = ifelse(DayOfWeek %in% c(6, 7), 'weekend', 'weekday'); delay = ArrDelay + DepDelay})
  },
  mutate   = {
    ### THE SPECIFIC FUNCTION IN DPLYR PACKAGE TO ADD VARIABLES ###
    mutate(hflights, wday = ifelse(DayOfWeek %in% c(6, 7), 'weekend', 'weekday'), delay = ArrDelay + DepDelay)
  },
  foreach = {
    ### SPLIT AND THEN COMBINE IN PARALLEL ###
    registerDoParallel(cores = 2)
    v <- c(names(hflights), 'wday', 'delay')
    f <- expression(ifelse(hflights$DayOfWeek %in% c(6, 7), 'weekend', 'weekday'),
                    hflights$ArrDelay + hflights$DepDelay)
    df <- foreach(fn = iter(f), .combine = mutate, .init = hflights) %dopar% {
      eval(fn)
    }
    names(df) <- v
  },
  data.table = {
    ### DATA.TABLE ###
    data.table(hflights)[, c("wday", "delay") := list(ifelse(hflights$DayOfWeek %in% c(6, 7), 'weekend', 'weekday'), hflights$ArrDelay + hflights$DepDelay)]
  }
)

#         test replications elapsed relative user.self sys.self user.child
# 4    foreach           10   1.442    1.000     0.240    0.144      0.848
# 2     within           10   0.667    2.783     0.668    0.000      0.000
# 3     mutate           10   0.679    2.833     0.680    0.000      0.000
# 5 data.table           10   0.955    3.983     0.956    0.000      0.000
# 1  transform           10   1.732    7.200     1.728    0.000      0.000

To leave a comment for the author, please follow the link and comment on their blog: S+/R – Yet Another Blog in Statistical Computing.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)