devtools 1.6

October 2, 2014
By

(This article was first published on RStudio Blog, and kindly contributed to R-bloggers)

Devtools 1.6 is now available on CRAN. Devtools makes it so easy to build a package that it becomes your default way to organise code, data and documentation. Learn more at http://r-pkgs.had.co.nz/. You can get the latest version with:

install.packages("devtools")

We’ve made a lot of improvements to the install and release process:

  • Installation functions now default to build_vignettes = FALSE, and only install required dependencies (not suggested). They also store a lot of useful metadata.
  • install_github() got a lot of love. install_github("user/repo") is now the preferred way to install a package from github (older forms with explicit username parameter are now deprecated). You can supply the host argument to install packages from a local github enterprise installation. You can get the latest release with user/[email protected]*release.
  • session_info() uses package installation metdata to show you exactly how every package was installed (locally, from CRAN, from github, …)
  • release() uses new webform-based submission process for CRAN, as implemented in submit_cran().
  • You can add arbitrary extra questions to release() by defining a function release_questions() in your package. It should return a character vector of questions to ask.

We’ve also added a number of functions to make it easy to get started with various aspects of the package development:

  • use_data() adds data to a package, either in data/ (external data) or in R/sysdata.rda (internal data). use_data_raw() sets up data-raw/ for your reproducible data generation scripts.
  • use_package() sets dependencies and reminds you how to use them.
  • use_rcpp() gets you ready to use Rcpp.
  • use_testthat() sets up testing infrastructure with testthat.
  • use_travis() adds a .travis.yml file and tells you how to get started with travis ci.
  • use_vignette() creates a draft vignette using Rmarkdown.

There were many other minor improvements and bug fixes. See the release notes for complete list of changes.

To leave a comment for the author, please follow the link and comment on their blog: RStudio Blog.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)