(This article was first published on

**Quantitative Ecology**, and kindly contributed to R-bloggers)anglefun <- function(xx,yy,bearing=TRUE,as.deg=FALSE){## calculates the compass bearing of the line between two points

## xx and yy are the differences in x and y coordinates between two points

## Options:

## bearing = FALSE returns +/- pi instead of 0:2*pi

## as.deg = TRUE returns degrees instead of radians

c = 1

if (as.deg){

c = 180/pi

}

b<-sign(xx)

b[b==0]<-1 #corrects for the fact that sign(0) == 0

tempangle = b*(yy<0)*pi+atan(xx/yy)

if(bearing){

#return a compass bearing 0 to 2pi

#if bearing==FALSE then a heading (+/- pi) is returned

tempangle[tempangle<0]<-tempangle[tempangle<0]+2*pi

}

return(tempangle*c)

}

bearing.ta <- function(loc1,loc2,loc3,as.deg=FALSE){

## calculates the bearing and length of the two lines

## formed by three points

## the turning angle from the first bearing to the

## second bearing is also calculated

## locations are assumed to be in (X,Y) format.

## Options:

## as.deg = TRUE returns degrees instead of radians

if (length(loc1) != 2 | length(loc2) != 2 | length(loc3) !=2){

print("Locations must consist of either three vectors, length == 2,

or three two-column dataframes")

return(NaN)

}

c = 1

if (as.deg){

c = 180/pi

}

locdiff1<-loc2-loc1

locdiff2<-loc3-loc2

bearing1<-anglefun(locdiff1[1],locdiff1[2],bearing=F)

bearing2<-anglefun(locdiff2[1],locdiff2[2],bearing=F)

if(is.data.frame(locdiff1)){

dist1<-sqrt(rowSums(locdiff1^2))

dist2<-sqrt(rowSums(locdiff2^2))

}else{

dist1<-sqrt(sum(locdiff1^2))

dist2<-sqrt(sum(locdiff2^2))

}

ta=(bearing2-bearing1)

ta[ta < -pi] = ta[ta < -pi] + 2*pi

ta[ta > pi] = ta[ta > pi] - 2*pi

return(list(bearing1=unlist(bearing1*c),bearing2=unlist(bearing2*c),

ta=unlist(ta*c),dist1=unlist(dist1),dist2=unlist(dist2)))

}

Related

To

**leave a comment**for the author, please follow the link and comment on their blog:**Quantitative Ecology**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...