Automatic Crack Detection – with Deep Learning

September 23, 2017
By

(This article was first published on R – recurrent null, and kindly contributed to R-bloggers)

On Friday at DOAG Big Data Days, I presented one possible application of deep learning: using deep learning for automatic crack detection – with some background theory, a Keras model trained from scratch, and the use of VGG16 pretrained on Imagenet. The amount of input data really was minimal, and the resulting accuracy, under these circumstances, not bad at all! Here are the slides.

If you’re interested, I’ll have a webcast on this as part of the Trivadis tricast series (registration). The talk will be in German though, so I guess some working knowledge of German would be helpful 🙂

Thanks for reading!

To leave a comment for the author, please follow the link and comment on their blog: R – recurrent null.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)