A square Le Monde mathematical puzzle: Given a triplet (a,b,c) of integers, with a<b<c, it satisfies the S property when a+b, a+c, b+c, a+b+c are perfect squares such that a+c, b+c, and a+b+c are consecutive squares. For a given a, is it always possible to find a pair (b,c) such (a,b,c) satisfies S? Can you