**R – Xi'an's Og**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

**A** question that came out on X validated is asking for help in figuring out the UMVUE (uniformly minimal variance unbiased estimator) of (1-θ)^{½} when observing iid Bernoulli B(θ). As it happens, there is no unbiased estimator of this quantity and hence not UMVUE. But there exists a Bernoulli factory producing a coin with probability (1-θ)^{½} from draws of a coin with probability θ, hence a mean to produce unbiased estimators of this quantity. Although of course UMVUE does not make sense in this sequential framework. While Nacu & Peres (2005) were uncertain there was a Bernoulli factory for θ^{½}, witness their Question #1, Mendo (2018) and Thomas and Blanchet (2018) showed that there does exist a Bernoulli factory solution for θ^{a}, 0≤a≤1, with constructive arguments that only require the series expansion of θ^{½}. In my answer to that question, using a straightforward R code, I tested the proposed algorithm, which indeed produces an unbiased estimate of θ^{½}… (Most surprisingly, the question got closed as a “self-study” question, which sounds absurd since it could not occur as an exercise or an exam question, unless the instructor is particularly clueless.)

**leave a comment**for the author, please follow the link and comment on their blog:

**R – Xi'an's Og**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.