Ben Bolker has an interesting paper (outline of a paper) comparing different approaches to estimate GLMM in R environment, which is very helpful to what I am doing right now.

The paper pointed out the following options to fit GLMM using R:

- glmer
- glmmML
- glmm (from the repeated package)
- glmmADMB
- MCMCglmm
- glmmBUGS
- glmmPQL
- BUGS (through R2WinBUGS)
- glmmAK

And I would like to add one more, npmlreg.

I am not aware of the glmmAK package before. From the first glance, it seems to be very promising in the sense that it seems to allow non-Gaussian random effect in a Bayesian framework, something similar to what npmlreg does with ML method.

============== edited on March 3 ====================

DPpackage is another package that can estimate GLMM in a Bayesian framework.

============== edited on March 5 ====================

ASReml/ASReml-R is another choice. It is not free software, but it does seem to have some unique strengths. Maybe I should download a demo copy and try it myself.

============== edited on March 29 ===================

hglm is another possibility.

*Related*

To

**leave a comment** for the author, please follow the link and comment on their blog:

** Shige's Research Blog**.

R-bloggers.com offers

**daily e-mail updates** about

R news and

tutorials on topics such as:

Data science,

Big Data, R jobs, visualization (

ggplot2,

Boxplots,

maps,

animation), programming (

RStudio,

Sweave,

LaTeX,

SQL,

Eclipse,

git,

hadoop,

Web Scraping) statistics (

regression,

PCA,

time series,

trading) and more...

If you got this far, why not

__subscribe for updates__ from the site? Choose your flavor:

e-mail,

twitter,

RSS, or

facebook...

**Tags:** GLMM, multilevel model, R