A simple proof that the p-value distribution is uniform when the null hypothesis is true

April 26, 2016
By

(This article was first published on Shravan Vasishth's Slog (Statistics blog), and kindly contributed to R-bloggers)

[Scroll to graphic below if math doesn’t render for you]

Thanks to Mark Andrews for correcting some crucial typos (I hope I got it right this time!).

Thanks also to Andrew Gelman for pointing out that the proof below holds only when the null hypothesis is a point null $H_0: \mu = 0$, and the dependent measure is continuous, such as reading time in milliseconds, or EEG responses.

Someone asked this question in my linear modeling class: why is it that the p-value has a uniform distribution when the null hypothesis is true? The proof is remarkably simple (and is called the probability integral transform).

First, notice that when a random variable Z comes from a $Uniform(0,1)$ distribution, then the probability that $Z$ is less than (or equal to) some value $z$ is exactly $z$: $P(Z\leq z)=z$.

Next, we prove the following proposition:

Proposition:
If a random variable $Z=F(T)$, then $Z \sim Uniform(0,1)$.

Note here that the p-value is a random variable, call it $Z$. The p-value is computed by calculating the probability of seeing a t-statistic or something more extreme under the null hypothesis. The t-statistic comes from a random variable $T$ that is a transformation of the random variable $\bar{X}$: $T=(\bar{X}-\mu)/(\sigma/\sqrt{n})$. This random variable T has a CDF $F$.

So, if we can prove the above proposition, we have shown that the p-value’s distribution under the null hypothesis is $Uniform(0,1)$.

Proof:

Let $Z=F(T)$.

$P(Z\leq z) = P(F(T)\leq z) = P(F^{-1} F(T) \leq F^{-1}(z) )
= P(T \leq F^{-1} (z) )
= F(F^{-1}(z))= z$.

Since $P(Z\leq z)=z$, Z is uniformly distributed, that is, Uniform(0,1).

A screengrab in case the above doesn’t render:

To leave a comment for the author, please follow the link and comment on their blog: Shravan Vasishth's Slog (Statistics blog).

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)