A guide to speeding up R code

May 10, 2013
By

[This article was first published on Revolutions, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Noam Ross recently shared a very useful guide to speeding up your R code

  • Get a bigger computer (for example, renting an instance on the Amazon cloud for a few cents an hour)
  • Use parallel programming techniques
  • Using the R byte-compiler
  • Profiling and benchmarking your code
  • Using high-performance packages (like xts, for time series)
  • And lastly, rewriting your code to use more efficient constructs

One other tip that can have some great performance benefits is linking R to parallel BLAS libraries (Revolution R does this by default). For more details on how to speed up your R code read Noam's excellent guide, linked below.

Noam Ross: FasteR! HigheR! StrongeR! – A Guide to Speeding Up R Code for Busy People

To leave a comment for the author, please follow the link and comment on their blog: Revolutions.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Search R-bloggers

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)