[This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

As I was working on a research project with graduate students, I became interested in fast and not necessarily very accurate approximations to the normal cdf Φ and its inverse. Reading through this 2010 paper of Richards et al., using for instance

$F_0(x) =\frac{1}{2}(1+\sqrt{1-\exp(-2x^2/\pi)})$

(with another version replacing 2/π with the squared root of π/8) and

$latex F_2(x)=1/1+exp(-1.5976x(1+0.04417x^2))$

not to mention a rational faction. All of which are more efficient (in R), if barely, than the resident pnorm() function.

      test replications elapsed relative user.self
3 logistic       100000   0.410    1.000     0.410
2    polya       100000   0.411    1.002     0.411
1 resident       100000   0.455    1.110     0.455


For the inverse cdf, the approximations there are involving numerical inversion except for

$F_0^{-1}(p) =(-\pi/2 \log[1-(2p-1)^2])^{\frac{1}{2}}$

which proves slightly faster than qnorm()

       test replications elapsed relative user.self
2 inv-polya       100000   0.401    1.000     0.401
1  resident       100000   0.450    1.000     0.450


To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

# Never miss an update! Subscribe to R-bloggers to receive e-mails with the latest R posts.(You will not see this message again.)

Click here to close (This popup will not appear again)