# The Elements of Variance

[This article was first published on

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

**R-posts.com**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

## Partial Moments Equivalences

Below are some basic equivalences demonstrating partial moments’ role as the elements of variance.### The additional information generated from partial moments permits a level of analysis simply not possible with traditional summary statistics. There is further introductory material on partial moments and their extension into nonlinear analysis & behavioral finance applications available at: Why is this relevant?

https://www.linkedin.com/pulse/elements-variance-fred-viole

## Installation

`require(devtools); install_github('OVVO-Financial/NNS',ref = "NNS-Beta-Version")`

### A difference between the upside area and the downside area of f(x). Mean

```
set.seed(123); x=rnorm(100); y=rnorm(100)
> mean(x)
[1] 0.09040591
> UPM(1,0,x)-LPM(1,0,x)
[1] 0.09040591
```

### A sum of the squared upside area and the squared downside area. Variance

```
> var(x)
[1] 0.8332328
# Sample Variance:
> UPM(2,mean(x),x)+LPM(2,mean(x),x)
[1] 0.8249005
# Population Variance:
> (UPM(2,mean(x),x)+LPM(2,mean(x),x))*(length(x)/(length(x)-1))
[1] 0.8332328
# Variance is also the co-variance of itself:
> (Co.LPM(1,1,x,x,mean(x),mean(x))+Co.UPM(1,1,x,x,mean(x),mean(x))-D.LPM(1,1,x,x,mean(x),mean(x))-D.UPM(1,1,x,x,mean(x),mean(x)))*(length(x)/(length(x)-1))
[1] 0.8332328
```

### Standard Deviation

```
> sd(x)
[1] 0.9128159
> ((UPM(2,mean(x),x)+LPM(2,mean(x),x))*(length(x)/(length(x)-1)))^.5
[1] 0.9128159
```

### Covariance

```
> cov(x,y)
[1] -0.04372107
> (Co.LPM(1,1,x,y,mean(x),mean(y))+Co.UPM(1,1,x,y,mean(x),mean(y))-D.LPM(1,1,x,y,mean(x),mean(y))-D.UPM(1,1,x,y,mean(x),mean(y)))*(length(x)/(length(x)-1))
[1] -0.04372107
```

### Covariance Elements and Covariance Matrix

```
> cov(cbind(x,y))
x y
x 0.83323283 -0.04372107
y -0.04372107 0.93506310
> cov.mtx=PM.matrix(LPM.degree = 1,UPM.degree = 1,target = 'mean', variable = cbind(x,y), pop.adj = TRUE)
> cov.mtx
$clpm
x y
x 0.4033078 0.1559295
y 0.1559295 0.3939005
$cupm
x y
x 0.4299250 0.1033601
y 0.1033601 0.5411626
$dlpm
x y
x 0.0000000 0.1469182
y 0.1560924 0.0000000
$dupm
x y
x 0.0000000 0.1560924
y 0.1469182 0.0000000
$matrix
x y
x 0.83323283 -0.04372107
y -0.04372107 0.93506310
```

### Pearson Correlation

```
> cor(x,y)
[1] -0.04953215
> cov.xy=(Co.LPM(1,1,x,y,mean(x),mean(y))+Co.UPM(1,1,x,y,mean(x),mean(y))-D.LPM(1,1,x,y,mean(x),mean(y))-D.UPM(1,1,x,y,mean(x),mean(y)))*(length(x)/(length(x)-1))
> sd.x=((UPM(2,mean(x),x)+LPM(2,mean(x),x))*(length(x)/(length(x)-1)))^.5
> sd.y=((UPM(2,mean(y),y)+LPM(2,mean(y),y))*(length(y)/(length(y)-1)))^.5
> cov.xy/(sd.x*sd.y)
[1] -0.04953215
```

### A normalized difference between upside area and downside area. Skewness*

```
> skewness(x)
[1] 0.06049948
> ((UPM(3,mean(x),x)-LPM(3,mean(x),x))/(UPM(2,mean(x),x)+LPM(2,mean(x),x))^(3/2))
[1] 0.06049948
```

### UPM/LPM – a more intuitive measure of skewness. (Upside area / Downside area)

```
> UPM(1,0,x)/LPM(1,0,x)
[1] 1.282673
```

### A normalized sum of upside area and downside area. Kurtosis*

```
> kurtosis(x)
[1] -0.161053
> ((UPM(4,mean(x),x)+LPM(4,mean(x),x))/(UPM(2,mean(x),x)+LPM(2,mean(x),x))^2)-3
[1] -0.161053
```

### CDFs

```
> P=ecdf(x)
> P(0);P(1)
[1] 0.48
[1] 0.83
> LPM(0,0,x);LPM(0,1,x)
[1] 0.48
[1] 0.83
# Vectorized targets:
> LPM(0,c(0,1),x)
[1] 0.48 0.83
# Joint CDF:
> Co.LPM(0,0,x,y,0,0)
[1] 0.28
# Vectorized targets:
> Co.LPM(0,0,x,y,c(0,1),c(0,1))
[1] 0.28 0.73
```

### PDFs

```
> tgt=sort(x)
# Arbitrary d/dx approximation
> d.dx=(max(x)+abs(min(x)))/100
> PDF=(LPM.ratio(1,tgt+d.dx,x)-LPM.ratio(1,tgt-d.dx,x))
> plot(sort(x),PDF,col='blue',type='l',lwd=3,xlab="x")
```

### Numerical Integration – [UPM(1,0,f(x))-LPM(1,0,f(x))]=[F(b)-F(a)]/[b-a]

```
# x is uniform sample over interval [a,b]; y = f(x)
> x=seq(0,1,.001);y=x^2
> UPM(1,0,y)-LPM(1,0,y)
[1] 0.3335
```

### Bayes’ Theoremhttps://github.com/OVVO-Financial/NNS/blob/NNS-Beta-Version/examples/Bayes’%20Theorem%20From%20Partial%20Moments.pdf

*Functions are called from the PerformanceAnalytics package

require(PerformanceAnalytics)

To

**leave a comment**for the author, please follow the link and comment on their blog:**R-posts.com**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.