# Le Monde puzzle [#1114]

**R – Xi'an's Og**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

**A**nother very low-key arithmetic problem as Le Monde current mathematical puzzle:

32761 is 181² and the difference of two cubes, which ones? And 181=9²+10², the sum of two consecutive integers. Is this a general rule, i.e. the root z of a perfect square that is the difference of two cubes is always the sum of two consecutive integers squared?

The solution proceeds by a very dumb R search of cubes, leading to

34761=105³-104³

The general rule can be failed by a single counter-example. Running

sol=0;while(!sol){ x=sample(2:1e3,1) y=sample(1:x,1)-1 sol=is.sqr(z<-x^3-y^3) z=round(sqrt(z)) if (sol) sol=(trunc(sqrt(z/2))^2+ceiling(sqrt(z/2))^2!=z)}

which is based on the fact that, if z is the sum of two consecutive integers squared, a² and (a+1)² then

2 a²

Running the R code produces

x=14, y=7

as a counter-example. (Note that, however, if the difference of cubes of two consecutive integers is a square, then this square can be written as the sum of the squares of two different integers.) Reading the solution in the following issue led me to realised I had missed the consecutive in the statement of the puzzle!

**leave a comment**for the author, please follow the link and comment on their blog:

**R – Xi'an's Og**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.