[This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't. The simple riddle of last week on The Riddler, about the minimum number of urinals needed for n men to pee if the occupation rule is to stay as far as possible from anyone there and never to stand next to another man,  is quickly solved by an R code:

```ocupee=function(M){
ok=rep(0,M)
ok=ok[M]=1
ok[trunc((1+M/2))]=1
while (max(diff((1:M)[ok!=0])>2)){
i=order(-diff((1:M)[ok!=0]))
ok[(1:M)[ok!=0][i]+trunc((diff((1:M)[ok!=0])[i]/2))]=1
}
return(sum(ok>0))
}
```

with maximal occupation illustrated by the graph below: Meaning that the efficiency of the positioning scheme is not optimal when following the sequential positioning, requiring \$latexN+2^{\lceil log_2(N-1) \rceil}\$ urinals. Rather than one out of two, requiring 2N-1 urinals. What is most funny in this simple exercise is the connection exposed in the Riddler with an Xkcd blag written a few years go about the topic.

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

# Never miss an update! Subscribe to R-bloggers to receive e-mails with the latest R posts.(You will not see this message again.)

Click here to close (This popup will not appear again)