uniform on the sphere [or not]

[This article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

While looking at X validated questions, I came upon this comment that simulating a uniform distribution on a d-dimensional unit sphere does not proceed from generating angles at random on (0,2π) and computing spherical coordinates… Which I must confess would have been my initial suggestion! This is obvious, nonetheless, when computing the Jacobian of the spherical coordinate transform, which involves powers of the sines of the angles, in a decreasing sequence from d-1 to zero. This means that the angles should be simulated according to their respective sine-power densities. However, except for the d=3 case, where simulating from the density sin(φ) is straightforward by inverse cdf, i.e. φ=acos(1-2u), the cdfs for the higher powers are combinations of sines and cosines, and as such are not easily inverted. Take for instance the eighth power:

F⁸(φ)=(840 φ – 672 sin(2 φ) + 168 sin(4 φ) – 32 sin(6 φ) + 3 sin(8 φ))/3072

While the densities are bounded by sin(φ), up to a constant, and hence an accept-reject can be easily derived, the efficiency decreases with the dimension according to the respective ratio of the Wallis’ integrals, unsurprisingly. A quick check for d=4 shows that the Normal simulation+projection-by-division-by-its-norm is faster.

Puzzling a bit further about this while running, I wondered at the simultaneous simulations from sin(φ), sin(φ)², sin(φ)³, &tc., but cannot see a faster way to recycle simulations from sin(φ). Points (φ,u) located in-between two adjacent power curves are acceptable simulations from the corresponding upper curve but they need be augmented by points (φ,u) under the lower curve to constitute a representative sample. In the end, this amounts to multiplying simulations from the highest power density as many times as there are powers. No gain in sight… Sigh!

However, a few days later, while enjoying the sunset over Mont Blanc(!), I figured out that there exists a direct and efficient way to simulate from these powers of the sine function. Indeed, when looking at the density of cos(φ), it happens to be the signed root of a Beta(½,(d-1)/2), which avoids the accept-reject step. Presumably this is well-known, but I have not seen this proposal associated with the uniform distribution on the sphere.

To leave a comment for the author, please follow the link and comment on their blog: R – Xi'an's Og.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)