weakly informative reparameterisations
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Our paper, weakly informative reparameterisations of location-scale mixtures, with Kaniav Kamary and Kate Lee, got accepted by JCGS! Great news, which comes in perfect timing for Kaniav as she is currently applying for positions. The paper proposes a unidimensional mixture Bayesian modelling based on the first and second moment constraints, since these turn the remainder of the parameter space into a compact. While we had already developed an associated R package, Ultimixt, the current editorial policy of JCGS imposes the R code used to produce all results to be attached to the submission and it took us a few more weeks than it should have to produce a directly executable code, due to internal library incompatibilities. (For this entry, I was looking for a link to our special JCGS issue with my picture of Edinburgh but realised I did not have this picture.)
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.