Timing in R

[This article was first published on R on The Jumping Rivers Blog, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

As time goes on, your R scripts are probably getting longer and more complicated, right? Timing parts of your script could save you precious time when re-running code over and over again. Today I’m going to go through the 4 main functions for doing so.

Nested timings

1) Sys.time()

Sys.time() takes a “snap-shot” of the current time and so it can be used to record start and end times of code.

start_time = Sys.time()
end_time = Sys.time()

To calculate the difference, we just use a simple subtraction

end_time - start_time
## Time difference of 0.5061 secs

Notice it creates a neat little message for the time difference.

2) The tictoc package

You can install the CRAN version of tictoc via


whilst the most recent development is available via the tictoc GitHub page.


Like Sys.time(), tictoc also gives us ability to nest timings within code. However, we now have some more options to customise our timing. At it’s most basic it acts like Sys.time():

## 0.506 sec elapsed

Now for a more contrived example.

# start timer for the entire section, notice we can name sections of code
tic("total time") 
# start timer for first subsection
tic("Start time til half way")
# end timer for the first subsection, log = TRUE tells toc to give us a message
toc(log = TRUE)
## Start time til half way: 2.037 sec elapsed

Now to start the timer for the second subsection

tic("Half way til end")
# end timer for second subsection
toc(log = TRUE)
## Half way til end: 2.012 sec elapsed
# end timer for entire section
toc(log = TRUE)
## total time: 4.067 sec elapsed

We can view the results as a list (format = TRUE returns this list in a nice format), rather than raw code

tic.log(format = TRUE)
## [[1]]
## [1] "Start time til half way: 2.037 sec elapsed"
## [[2]]
## [1] "Half way til end: 2.012 sec elapsed"
## [[3]]
## [1] "total time: 4.067 sec elapsed"

We can also reset the log via


Comparing functions

1) system.time()

Why oh WHY did R choose to give system.time() a lower case s and Sys.time() and upper case s? Anyway… system.time() can be used to time functions without having to take note of the start and end times.

##    user  system elapsed 
##   0.000   0.000   0.501
##    user  system elapsed 
##   0.000   0.000   1.003

We only want to take notice of the “elapsed” time, for the definition of the “user” and “system” times see this thread.

For a repeated timing, we would use the replicate() function.

system.time(replicate(10, Sys.sleep(0.1)))
##    user  system elapsed 
##   0.000   0.000   1.007

2) The microbenchmark package

You can install the CRAN version of microbenchmark via


Alternatively you can install the latest update via the microbenchmark GitHub page.


At it’s most basic, microbenchmark() can we used to time single pieces of code.

# times = 10: repeat the test 10 times
# unit = "s": output in seconds
microbenchmark(Sys.sleep(0.1), times = 10, unit = "s")
## Unit: seconds
##            expr    min     lq   mean median     uq    max neval
##  Sys.sleep(0.1) 0.1001 0.1006 0.1005 0.1006 0.1006 0.1006    10

Notice we get a nicely formatted table of summary statistics. We can record our times in anything from seconds to nanoseconds(!!!!). Already this is better than system.time(). Not only that, but we can compare sections of code in an easy-to-do way and name the sections of code for an easy-to-read output.

sleep = microbenchmark(sleepy = Sys.sleep(0.1), 
                       sleepier = Sys.sleep(0.2),
                       sleepiest = Sys.sleep(0.3),
                       times = 10, 
                       unit = "s")

As well as this (more?!) microbenchmark comes with a two built-in plotting functions.



These provide quick and efficient ways of visualising our timings.


Sys.time() and system.time() have there place, but for most cases we can do better. The tictoc and microbenchmark packages are particularly useful and make it easy to store timings for later use, and the range of options for both packages stretch far past the options for Sys.time() and system.time(). The built-in plotting functions are handy.

Thanks for chatting!

To leave a comment for the author, please follow the link and comment on their blog: R on The Jumping Rivers Blog.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)