Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

In my previous post, I discussed how to use OpenStreetMaps (and standard plotting functions of R) to visualize John Snow’s dataset. But it is also possible to use Google Maps (and ggplot2 types of graphs).

```library(ggmap)
get_london <- get_map(c(-.137,51.513), zoom=17)
london <- ggmap(get_london)```

Again, the tricky part comes from the fact that the coordinate representation system, here, is not the same as the one used on Robin Wilson’s blog.

```library(foreign)

So we have to change it

```df_deaths=data.frame([email protected])
library(sp)
library(rgdal)
coordinates(df_deaths)=~coords.x1+coords.x2
proj4string(df_deaths)=CRS("+init=epsg:27700")
df_deaths = spTransform(df_deaths,CRS("+proj=longlat +datum=WGS84"))```

Here, we have the same coordinate system as the one used in Google Maps. Now, we can add a layer, with the points,

`london + geom_point(aes(x=coords.x1, y=coords.x2),data=data.frame([email protected]),col="red")` Again, it is possible to add the density, as an additional layer,

```london + geom_point(aes(x=coords.x1, y=coords.x2),
data=data.frame([email protected]),col="red")+
geom_density2d(data = data.frame([email protected]),
aes(x = coords.x1, y=coords.x2), size = 0.3) +
stat_density2d(data = data.frame([email protected]),
aes(x = coords.x1, y=coords.x2,fill = ..level.., alpha = ..level..),size = 0.01, bins = 16, geom = "polygon") + scale_fill_gradient(low = "green", high = "red",guide = FALSE) +
scale_alpha(range = c(0, 0.3), guide = FALSE)``` 