Learn dplyr with RStudio and Datacamp

[This article was first published on RStudio Blog, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

datacamp-dplyr

RStudio has teamed up with Datacamp to create a new, interactive way to learn dplyr. Dplyr is an R package that provides a fast, intuitive way to transform data sets with R. It introduces five functions, optimized in C++, that can handle ~90% of data manipulation tasks. These functions are lightning fast, which lets you accomplish more things—with more data—than you could otherwise. They are also designed to be intuitive and easy to learn, which makes R more user friendly. But this is just the beginning. Dplyr also automates groupwise operations in R, provides a standard syntax for accessing and manipulating database data with R, and much more.

In the course, you will learn how to use dplyr to

  • select() variables and filter() observations from your data in a targeted way
  • arrange() observations within your data set by value
  • derive new variables from your data with mutate()
  • create summary statistics with summarise()
  • perform groupwise operations with group_by()
  • use the dplyr syntax to access data stored in a database outside of R.

You will also practice using the tbl data structure and the new pipe operator in R, %>%.

The course is taught by Garrett Grolemund, RStudio’s Master Instructor, and is organized around Datacamp’s interactive interface. You will receive expert instruction in short, clear videos as you work through a series of progressive exercises. As you work, the Datacamp interface will provide immediate feedback and hints, alerting you when you do something wrong and rewarding you when you do something right. The course is designed to take about 4 hours and requires only a basic familiarity with R.

This is the first course in a RStudio datacamp track that will cover dplyr, ggvis, rmarkdown, and the RStudio IDE. To enroll, visit the datacamp dplyr portal.


To leave a comment for the author, please follow the link and comment on their blog: RStudio Blog.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)