Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

This post will provide an introduction to the way that rules work in quantstrat. It will detail market orders along with order-sizing functions (limit orders will be saved for a later date). After this post, readers should be able to understand the strategies written in my blog posts, and should be able to write their own. Unlike indicators and signals, rules usually call one function, which is called “ruleSignal” (there is a function that is specifically designed for rebalancing strategies, but it’s possible to do that outside the bounds of quantstrat). For all intents and purposes, this one function handles all rule executions. However, that isn’t to say that rules cannot be customized, as the ruleSignal function has many different arguments that can take in one of several values, though not all permutations will be explored in this post. Let’s take a look at some rules:

#rules
if(atrOrder) {

arguments=list(sigcol="longEntry", sigval=TRUE, ordertype="market",
orderside="long", replace=FALSE, prefer="Open",
pctATR=pctATR, atrMod="X"),
type="enter", path.dep=TRUE)
} else {
arguments=list(sigcol="longEntry", sigval=TRUE, ordertype="market",
orderside="long", replace=FALSE, prefer="Open",
type="enter", path.dep=TRUE)
}

arguments=list(sigcol="longExit", sigval=TRUE, orderqty="all",
ordertype="market", orderside="long",
replace=FALSE, prefer="Open"),
type="exit", path.dep=TRUE)

arguments=list(sigcol="filterExit", sigval=TRUE, orderqty="all",
ordertype="market", orderside="long", replace=FALSE,
prefer="Open"),
type="exit", path.dep=TRUE)


In this case, the first thing to note is that as quantstrat is an R library, it can also incorporate basic programming concepts into the actual strategy formulation. In this case, depending on a meta-parameter (that is, a parameter not found in the argument of any indicator, signal, or rule) called atrOrder (a boolean), I can choose which rule I wish to add to the strategy configuration.

Next, here’s the format for adding a rule:

2) The name of the strategy (strategy.st)
3) The name of the strategy function (this is usually “ruleSignal”)
4) The arguments to ruleSignal:

a) The signal column (sigCol)
b) the value that signals a trigger (sigVal)
c) the order type (ordertype)
d) the order side (orderside)
e) to replace any other open signal (replace)
f) The order quantity (orderqty) is no order-sizing function is used.
g) the preferred price (prefer, defaults to Close, but as quantstrat is a next-bar system, I use the open)
h) the order sizing function (osFUN)
i) the arguments to the order-sizing function.
j) There are other arguments to different order types, but we’ll focus on market orders for this post.

5) The rule type (type), which will comprise either “enter” or “exit” for most demos
6) The path.dep argument, which is always TRUE
7) (Not shown) the label for the rule. If you’re interested in writing your demos as quickly as possible, these are not necessary if your entry and exit rules are your absolute final points of logic in your backtest. However, if you wish to look at your orders in detail, or use stop-losses/take-profit orders, then the rules need labels, as well.

While most of the logic to adding your basic rule is almost always boilerplate outside the arguments to ruleSignal, it’s the arguments to ruleSignal that allow users to customize rules.

The sigCol argument is a string that has the exact name of the signal column that you wish to use to generate your entries (or exits) from. This is the same string that went into the label argument of your add.signal function calls. In quantstrat, labels effectively act as logical links between indicators, signals, rules, and more.

The sigVal argument is what value to use to trigger rule logic. Since signal output (so far) is comprised of ones (TRUE) and zeroes (FALSE), I set my sigVal to TRUE. It is possible, however, to make a sigSum rule and then allow the sigVal argument to take other values.

The ordertype argument is the order type. For most of my demos that I’ve presented thus far, I’ve mostly used “market” type orders, which are the simplest. Market orders execute at the next bar after receiving the signal. They do not execute on the signal bar, but the bar after the signal bar. On daily data, this might cause some P/L due to gaps, but on intraday data, the open of the next bar should be very similar to the close of current bar. One thing to note is that using monthly data, quantstrat uses current-bar execution.

The orderside argument takes one of two values–“long” or “short”. This separates rule executions into two bins, such that long sells won’t work on short positions and vice versa. It also serves to add clarity and readability to strategy specifications.

The replace argument functions in the following way: if TRUE, it overrides any other signal on the same day. Generally, I avoid ever setting this to true, as order sets (not shown in this post) exist deliberately to control order replacement. However, for some reason, it defaults to TRUE in quantstrat, so make sure to set it to FALSE whenever you write a strategy.

The orderqty argument applies only when there’s no osFUN specified. It can take a flat value (E.G. 1, 2, 100, etc.), or, when the rule type is “exit”, a quantity of “all”, to flatten a position. In all the sell rules I use in my demos, my strategies do not scale out of positions, but merely flatten them out.

The prefer argument exists for specifying what aspect of a bar a trade will get in on. Quantstrat by default executes at the close of the next bar. I set this argument to “Open” instead to minimize the effect of the next bar transaction.

The osFUN specifies the order-sizing function to use. Unlike the functions passed into the name arguments in quantstrat (for indicators, signals, or rules), the osFUN argument is actually a function object (that is, it’s the actual function, rather than its name) that gets passed in as an argument. Furthermore, and this is critical: all arguments *to* the order-sizing function must be passed into the arguments for ruleSignal. They are covered through the ellipsis functionality that most R functions include. The ellipsis means that additional arguments can be passed in, and these additional arguments usually correspond to functions used inside the original function that’s called. This, of course, has the potential to violate the black-box modular programming paradigm by assuming users know the inner-workings of pre-existing code, but it offers additional flexibility in instances such as these. So, to give an example, in my entry rule that uses the osDollarATR order-sizing function, arguments such as pctATR and tradeSize are not arguments to the ruleSignal function, but to the osDollarATR function. Nevertheless, the point to pass them in when constructing a quantstrat strategy is in the arguments to ruleSignal.

If you do not wish to use an osFUN, simply use a flat quantity, such as 100, or if using exit type orders, use “all” to flatten a position.

Moving outside the arguments to ruleSignal, we have several other arguments:

The type argument takes one of several values–but “enter” and “exit” are the most basic. They do exactly as they state. There are other rule types, such as “chain” (for stop-losses), which have their own mechanics, but for now, know that “enter” and “exit” are the two basic rules you need to get off the ground.

The path.dep argument should always be TRUE for the ruleSignal function.

Finally, add.rule also contains a label argument that I do not often use in my demos, as usually, my rules are the last point of my logic. However, if one wants to do deeper strategy analysis using the order book, then using these labels is critical.

After adding rules, you can simply call applyStrategy and run your backtest. Here’s an explanation of how that’s done:

#apply strategy
t1 <- Sys.time()
out <- applyStrategy(strategy=strategy.st,portfolios=portfolio.st)
t2 <- Sys.time()
print(t2-t1)

#set up analytics
updatePortf(portfolio.st)
dateRange <- time(getPortfolio(portfolio.st)\$summary)[-1]
updateAcct(portfolio.st,dateRange)
updateEndEq(account.st)



As an explanation, I enclose the applyStrategy call in some code to print how much time the backtest took. Generally, on these twelve years of daily data, a single market may take between several seconds to thirty seconds (if a strategy has hundreds of trades per market).

The next four lines essentially update the objects initialized in order of dependency: first the portfolio, then the account for a given date range (the duration of the backtest), and then compute the end equity.

This concludes the basic nuts and bolts of creating a basic nuts and bolts strategy in quantstrat. On this blog, when I make more use of other features, I’ll dedicate other nuts and bolts sections so that readers can use all of quantstrat’s features more efficiently.