[This article was first published on Ripples, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Float like a butterfly, sting like a bee (Muhammad Ali)

The Butterfly Curve was discovered by Temple H. Fay when he was in Southern University, Mississippi, and rapidly gained the attention of students and mathematicians because of its beautiful simmetry. Small dots of this plot are generated according to parametric equations of the Butterfly Curve. Big dots are randomdly distributed over the canvas:


This is the code to create butterflies:

panel.background = element_blank(),
panel.grid = element_blank(),
axis.text =element_blank())
butterfly=data.frame(x=sin(t)*(exp(1)^cos(t)-2*cos(4*t)-(sin(t/12))^5), y=cos(t)*(exp(1)^cos(t)-2*cos(4*t)-(sin(t/12))^5), s=runif(npointsb, min=.1, max=10), f=factor(sample(1:10,npointsb,TRUE)), a=runif(npointsb,min=.1, max=.4))
points=data.frame(x=runif(npoints,-4,4), y=runif(npoints,-3,5), s=runif(npoints,min=30, max=50), f=factor(sample(1:10,npoints,TRUE)), a=runif(npoints,min=.05, max=.15))
data=rbind(butterfly, points)
ggplot(data, aes(x, y, colour=f))+geom_point(alpha=data$a,size=data$s)+opt

To leave a comment for the author, please follow the link and comment on their blog: Ripples.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)