# I’ll take my NLS with weights, please…

**Rmazing**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Today I want to advocate weighted nonlinear regression. Why so?

Minimum-variance estimation of the adjustable parameters in linear and non-linear least squares requires that the data be weighted inversely as their variances . Only then is the BLUE (Best Linear Unbiased Estimator) for linear regression and nonlinear regression with small errors (http://en.wikipedia.org/wiki/Weighted_least_squares#Weighted_least_squares), an important fact frequently neglected, especially in scenarios with heteroscedasticity.

The variance of a fit is also characterized by the statistic defined as followed:

The relationship between and can be seen most easily by comparison with the reduced :

whereas = degrees of freedom (N – p), and is the weighted average of the individual variances. If the fitting function is a good approximation to the parent function, the value of the reduced chi-square should be approximately unity, . If the fitting function is not appropriate for describing the data, the deviations will be larger and the estimated variance will be too large, yielding a value greater than 1. A value less than 1 can be a consequence of the fact that there exists an uncertainty in the determination of , and the observed values of will fluctuate from experiment to experiment. To assign significance to the value, one can use the integral probability which describes the probability that a random set of data points sampled from the parent distribution would yield a value of equal to or greater than the calculated one. This can be calculated by `1 - pchisq(chi^2, nu)`

in *R*.

To see that this actually works, we can Monte Carlo simulate some heteroscedastic data with defined variance as a function of -magnitude and compare unweighted and weighted NLS.

First we take the example from the documentation to *nls* and fit an enzyme kinetic model:

```
DNase1 <- subset(DNase, Run == 1)
fm3DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
data = DNase1,
start = list(Asym = 3, xmid = 0, scal = 1))
```

Then we take the fitted values (which are duplicated because of the initial replicates), create a new unique dataset on which we create 20 response values for each concentration sampled from a normal distribution with 2% random heteroscedastic gaussian noise as a function of the value’s magnitude :

```
FITTED <- unique(fitted(fm3DNase1))
DAT <- sapply(FITTED, function(x) rnorm(20, mean = x, sd = 0.02 * x))
matplot(t(DAT), type = "p", pch = 16, lty = 1, col = 1)
lines(FITTED, col = 2)
```

Now we create the new dataframe to be fitted. For this we have to stack the unique - and -values into a 2-column dataframe:

```
CONC <- unique(DNase1$conc)
fitDAT <- data.frame(conc = rep(CONC, each = 20), density = matrix(DAT))
```

First we create the unweighted fit:

```
FIT1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
data = fitDAT,
start = list(Asym = 3, xmid = 0, scal = 1))
```

Then we fit the data with weights . IMPORTANT: we need to replicate the weight values by 20 in order to match the data length.

```
VAR <- tapply(fitDAT$density, fitDAT$conc, var)
VAR <- rep(VAR, each = 20)
FIT2 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
data = fitDAT, weights = 1/VAR,
start = list(Asym = 3, xmid = 0, scal = 1))
```

For calculation of and its corresponding p-value, we use the *fitchisq* function of my ‘qpcR’ package:

```
library(qpcR)
> fitchisq(FIT1)
$chi2
[1] 191.7566
$chi2.red
[1] 1.22138
$p.value
[1] 0.03074883
> fitchisq(FIT2)
$chi2
[1] 156.7153
$chi2.red
[1] 0.9981866
$p.value
[1] 0.4913983
```

Now we see the benefit of weighted fitting: Only the weighted model shows us with it’s reduced chi-square value of almost exactly 1 and its high p-value that our fitted model approximates the parent model. And of course it does, because we simulated our data from it…

Cheers,

Andrej

Filed under: nonlinear regression Tagged: chi-square, nonlinear, regression, weights

**leave a comment**for the author, please follow the link and comment on their blog:

**Rmazing**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.