Big Data Analytics predictions for 2014

[This article was first published on Revolutions, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

As we close out the year, we asked a few members of the Revolution Analytics team to make a few predictions about big data analytics, data science and R for 2014. Here's what they came up with (including a few from yours truly).

Michele Chambers, Chief Strategy Officer and VP Product Management

  • While the sexiest job in 2013 was the data scientist generalist, in 2014 the focus will shift to data analysts in dedicated business units. The demand for data analysts will rise as data analysts are closer to the business issues, making them the go-to resource for data-based decision making.
  • In 2014, data analysts will be empowered through easy-to-use tool that leverage the insights of data scientists, by providing real-time forecasts and recommendations in their day-to-day business tools. Better analytics will make data analysis more effective, while automation frees up data scientists to focus on strategic initiatives and unlocking further value in corporate data stores.
  • The dam will break for the data scientist supply and demand issue of 2013 for two reasons. First: higher education institutions have quickly adapted to this market need with custom programs to train the next generation of data scientists. In 2014, those grads will be entering the workforce. Second: companies are getting better at carving out focused, big picture projects for data scientists and pushing smaller and line of business projects to business users and data analyst.

Greg Todd, Chief Technology Officer

  • 2014 will be the year when predictive analytics with data in Hadoop will become operational.

David Smith, VP Marketing and Community 

  • In 2013, the open source programming language R broke through as the go-to statistical software, surpassing SAS. There are nearly three million R users today and this will only continue to grow as students who study and work with R enter the private sector.
  • In 2014, the past 15 years of marketing research combined with Big Data predictive analytics will make one-to-one marketing a reality. Big data analytics help marketers take ideas from general to specific and tailor campaigns directly to the individual level.
  • Consumers understand that data is being collected on them and in 2014 they will come to expect interactions and experiences to be personalized. Marketers have an opportunity to build relationships with consumers or risk losing them due to generic blanket campaigns,” said David Smith, vice president of marketing & community at Revolution Analytics.

For more 2014 predictions from Alteryx, Cloudera and Tableau, check out 14 Analytics Predictions for 2014

To leave a comment for the author, please follow the link and comment on their blog: Revolutions. offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)