Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

This is the third post in the series about Multiple Factor Models. I will build on the code presented in the prior post, Multiple Factor Model – Building Fundamental Factors, and I will show how to build majority of factors described in the CSFB Alpha Factor Framework. For details of the CSFB Alpha Factor Framework please read CSFB Quantitative Research, Alpha Factor Framework on page 11, page 49 by P. N. Patel, S. Yao, R. Carlson, A. Banerji, J. Handelman.

This post will include long sections of code to extract/format data and build factors. I created a few helper functions for data manipulations and visualizations in the factor.model.r at github. For example, consecutive.changes function counts the number of consecutive positive changes.

The outline of this post:

• Create majority of CSFB factors
• Create and test Composite Average factor

Let’s start by getting Fundamental data and creating factors. In the prior post, I mentioned that it takes a while to download historical fundamental data for all companies in the Dow Jones index, and I recommend saving fundamental data with save(data.fund, file=’data.fund.Rdata’) command. In the following code I will just load historical fundamental data with load(file=’data.fund.Rdata’) command instead of downloading all data again.

###############################################################################
# Load Systematic Investor Toolbox (SIT)
# http://systematicinvestor.wordpress.com/systematic-investor-toolbox/
###############################################################################
con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))
source(con)
close(con)

#*****************************************************************
# Find Sectors for each company in DOW 30
#******************************************************************
tickers = spl('XLY,XLP,XLE,XLF,XLV,XLI,XLB,XLK,XLU')
tickers.desc = spl('ConsumerCyclicals,ConsumerStaples,Energy,Financials,HealthCare,Industrials,Materials,Technology,Utilities')

sector.map = c()
for(i in 1:len(tickers)) {
sector.map = rbind(sector.map,
cbind(sector.spdr.components(tickers[i]), tickers.desc[i])
)
}
colnames(sector.map) = spl('ticker,sector')

#*****************************************************************
#******************************************************************
tickers = dow.jones.components()

sectors = factor(sector.map[ match(tickers, sector.map[,'ticker']), 'sector'])
names(sectors) = tickers

# get fundamental data

# get pricing data

#*****************************************************************
# Combine fundamental and pricing data
#******************************************************************
for(i in tickers) {
fund = data.fund[[i]]
fund.date = date.fund.data(fund)
nperiods = ncol(fund)

# D - holds all data to be merged with pricing data
D = list()

#--------------------------------------------------------------
# Data for Traditional and Relative Value
#--------------------------------------------------------------

# Earnings per Share
D$EPS = get.fund.data('Diluted EPS from Total Operations', fund, fund.date, is.12m.rolling=T) # Sales, exception not available for financial service firms D$SALE = get.fund.data('total revenue', fund, fund.date, is.12m.rolling=T)

# Common Shares Outstanding
D$CSHO = get.fund.data('total common shares out', fund, fund.date) # Common Equity D$CEQ = get.fund.data('total equity', fund, fund.date)

# Dividends
D$DV.PS = get.fund.data('dividends paid per share', fund, fund.date, is.12m.rolling=T) # Cash Flow D$CFL = get.fund.data('net cash from operating activities', fund, fund.date, cash.flow=T, is.12m.rolling=T)

#--------------------------------------------------------------
# Data for Historical Growth
#--------------------------------------------------------------

# Consecutive Quarters of Positive Changes in Trailing 12 Month Cash Flow
D$CFL.CON.CHG = consecutive.changes(D$CFL)
# check
#merge(D$CFL, sign(diff(D$CFL)), consecutive.changes(D$CFL), consecutive.changes(D$CFL,F))

# Consecutive Quarters of Positive Change in Quarterly Earnings
D$EPS.CON.CHG = consecutive.changes(D$EPS)

# 12 Month Change in Quarterly Cash Flow
temp = get.fund.data('net cash from operating activities', fund, fund.date, cash.flow=T)
D$CFL.CHG = temp / mlag(temp,4) # 3 Year Average Annual Sales Growth D$SALE.3YR.GR = D$SALE if(!all(is.na(D$SALE))) D$SALE.3YR.GR = SMA(ifna(D$SALE / mlag(D$SALE,4) - 1,NA), 3*4) # 3 Year Average Annual Earnings Growth D$EPS.3YR.GR = SMA(D$EPS / mlag(D$EPS,4) - 1, 3*4)

# 12 Quarter Trendline in Trailing 12 Month Earnings
D$EPS.TREND = D$EPS * NA
D$EPS.TREND[12:nperiods] = sapply(12:nperiods, function(i) beta.degree(ols(cbind(1,1:12), D$EPS[(i-12+1):i])$coefficients[2])) # Slope of Trend Line Through Last 4 Quarters of Trailing 12M Cash Flows D$CFL.TREND = D$CFL * NA D$CFL.TREND[4:nperiods] = sapply(4:nperiods, function(i) beta.degree(ols(cbind(1,1:4), D$CFL[(i-4+1):i])$coefficients[2]))

#--------------------------------------------------------------
# Data for Profit Trends
#--------------------------------------------------------------
RECT = get.fund.data('receivables', fund, fund.date)
INVT = get.fund.data('inventories', fund, fund.date)

D$AT = get.fund.data('total assets', fund, fund.date) XSGA = get.fund.data('Selling, General & Administrative (SG&A) Expense', fund, fund.date, is.12m.rolling=T) # Consecutive Quarters of Declines in (Receivables+Inventories) / Sales D$RS.CON.CHG = consecutive.changes((RECT + INVT) / D$SALE, F) # Consecutive Qtrs of Positive Change in Trailing 12M Cash Flow / Sales D$CS.CON.CHG = consecutive.changes(D$CFL/D$SALE)

# Consecutive Quarters of Declines in Trailing 12 Month Overhead / Sales
D$OS.CON.CHG = consecutive.changes(XSGA/D$SALE, F)

# (Industry Relative) Trailing 12 Month (Receivables+Inventories) / Sales
D$RS = (RECT + INVT) / D$SALE

# (Industry Relative) Trailing 12 Month Sales / Assets
D$SA = D$SALE / D$AT # Trailing 12 Month Overhead / Sales D$OS = XSGA / D$SALE # Trailing 12 Month Earnings / Sales D$ES = D$EPS / D$SALE

#--------------------------------------------------------------
# Merge Fundamental and Pricing data
#--------------------------------------------------------------

# merge
data[[i]] = merge(data[[i]], as.xts(abind(D,along=2), fund.date))
}

bt.prep(data, align='keep.all', dates='1995::2011')

#*****************************************************************
# Create Factors
#******************************************************************
prices = data$prices prices = bt.apply.matrix(prices, function(x) ifna.prev(x)) # re-map sectors sectors = sectors[colnames(prices)] # create factors factors = list() factor.names = list()  Next let’s create majority of CSFB factors.  #***************************************************************** # Create Traditional Value #****************************************************************** factors$TV = list()
factor.names$TV = 'Traditional Value' # Market Value - capitalization CSHO = bt.apply(data, function(x) ifna.prev(x[, 'CSHO'])) MKVAL = prices * CSHO # Price / Earnings EPS = bt.apply(data, function(x) ifna.prev(x[, 'EPS'])) factors$TV$EP = EPS / prices # Price / Trailing Sales SALE = bt.apply(data, function(x) ifna.prev(x[, 'SALE'])) factors$TV$SP = SALE / MKVAL # Price / Trailing Cash Flow CFL = bt.apply(data, function(x) ifna.prev(x[, 'CFL'])) factors$TV$CFP = CFL / MKVAL # Dividend Yield DV.PS = bt.apply(data, function(x) ifna.prev(x[, 'DV.PS'])) factors$TV$DY = DV.PS / prices # Price / Book Value CEQ = bt.apply(data, function(x) ifna.prev(x[, 'CEQ'])) factors$TV$BP = CEQ / MKVAL # Eliminate Price/Sales and Price/Cash Flow for financial firms factors$TV$SP[, sectors == 'Financials'] = NA factors$TV$CFP[, sectors == 'Financials'] = NA #***************************************************************** # Create Historical Growth #****************************************************************** factors$HG = list()
factor.names$HG = 'Historical Growth' for(i in spl('CFL.CON.CHG,EPS.CON.CHG,CFL.CHG,SALE.3YR.GR,EPS.3YR.GR,EPS.TREND,CFL.TREND')) { factors$HG[[i]] = bt.apply(data, function(x) ifna.prev(x[, i]))
}

#*****************************************************************
# Create Profit Trends
#******************************************************************
factors$PT = list() factor.names$PT = 'Profit Trends'

for(i in spl('RS.CON.CHG,CS.CON.CHG,OS.CON.CHG,RS,SA,OS,ES')) {
factors$PT[[i]] = bt.apply(data, function(x) ifna.prev(x[, i])) } #***************************************************************** # Create Price Momentum #****************************************************************** factors$PM = list()
factor.names$PM = 'Price Momentum' # find week ends week.ends = endpoints(prices, 'weeks') week.prices = prices[week.ends,] week.nperiods = nrow(week.prices) #Slope of 52 Week Trend Line factors$PM$S52W.TREND = bt.apply.matrix(week.prices, function(x) { c(rep(NA,51), sapply(52:week.nperiods, function(i) beta.degree(ols(cbind(1,1:52), x[(i - 52 + 1):i])$coefficients[2]))
)})

#4/52 Week Price Oscillator
factors$PM$PP04.52W = bt.apply.matrix(week.prices, EMA, 4) / bt.apply.matrix(week.prices, EMA, 52)

#39 Week Return
factors$PM$R39W = week.prices / mlag(week.prices, 39)

#51 Week Volume Price Trend
# compute weekly volume
temp = bt.apply(data, function(x) cumsum(ifna(Vo(x),0)))
temp = temp[week.ends,]
week.volume = temp - mlag(temp)
temp = (week.prices - mlag(week.prices)) * week.volume
factors$PM$VPT51W = bt.apply.matrix(temp, runSum, 51)

# Convert weekly to daily
for(i in 1:len(factors$PM)) { temp = prices * NA temp[week.ends,] = factors$PM[[i]]
factors$PM[[i]] = bt.apply.matrix(temp, function(x) ifna.prev(x)) } #Percent Above 260 Day Low factors$PM$P260LOW = prices / bt.apply.matrix(prices, runMin, 260) # Flip sign for(i in names(factors$PM)) factors$PM[[i]] = -factors$PM[[i]]

#*****************************************************************
# Create Price Reversal
#******************************************************************
factors$PR = list() factor.names$PR = 'Price Reversal'

#5 Day Industry Relative Return
factors$PR$r5DR = prices/mlag(prices, 5)
factors$PR$r5DR = factors$PR$r5DR / sector.mean(factors$PR$r5DR, sectors)

#5 Day Money Flow / Volume
factors$PR$MFV = bt.apply(data, function(x) {
MFI(cbind(ifna.prev(Hi(x)),ifna.prev(Lo(x)),ifna.prev(Cl(x))), 5) / ifna.prev(Vo(x))
})

#10 Day MACD - Signal Line
factors$PR$MACD = bt.apply.matrix(prices, function(x) {
temp=MACD(x, 10)
temp[, 'macd'] - temp[, 'signal']
})

#14 Day RSI (Relative Strength Indicator)
factors$PR$RSI = bt.apply.matrix(prices, RSI, 14)

#14 Day Stochastic
factors$PR$STOCH = bt.apply(data, function(x) {
stoch(cbind(ifna.prev(Hi(x)),ifna.prev(Lo(x)),ifna.prev(Cl(x))),14)[,'slowD']
})

#4 Week Industry Relative Return
factors$PR$rR4W = week.prices / mlag(week.prices,4)
factors$PR$rR4W = factors$PR$rR4W / sector.mean(factors$PR$rR4W, sectors)

# Convert weekly to daily
temp = prices * NA
temp[week.ends,] = factors$PR$rR4W
factors$PR$rR4W = bt.apply.matrix(temp, function(x) ifna.prev(x))

# VOMO - Volume x Momentum
volume = bt.apply(data, function(x) ifna.prev(Vo(x)))
factors$PR$VOMO = (prices / mlag(prices,10) - 1) * bt.apply.matrix(volume, runMean, 22) / bt.apply.matrix(volume, runMean, 66)

# Flip sign
for(i in names(factors$PR)) factors$PR[[i]] = -factors$PR[[i]] #***************************************************************** # Create Small Size #****************************************************************** factors$SS = list()
factor.names$SS = 'Small Size' #Log of Market Capitalization factors$SS$MC = log(MKVAL) #Log of Market Capitalization Cubed factors$SS$MC3 = log(MKVAL)^3 #Log of Stock Price factors$SS$P = log(prices) #Log of Total Assets factors$SS$AT = log(bt.apply(data, function(x) ifna.prev(x[, 'AT']))) #Log of Trailing-12-Month Sales factors$SS$SALE = log(bt.apply(data, function(x) ifna.prev(x[, 'SALE']))) # Flip sign for(i in names(factors$SS)) factors$SS[[i]] = -factors$SS[[i]]

#*****************************************************************
# Convert to monthly
#******************************************************************
# find month ends
month.ends = endpoints(prices, 'months')

prices = prices[month.ends,]
n = ncol(prices)
nperiods = nrow(prices)

ret = prices / mlag(prices) - 1
next.month.ret = mlag(ret, -1)

MKVAL = MKVAL[month.ends,]

for(j in 1:len(factors)) {
for(i in 1:len(factors[[j]])) {
factors[[j]][[i]] = factors[[j]][[i]][month.ends,]
factors[[j]][[i]][] = ifna(factors[[j]][[i]],NA)
}
}

#*****************************************************************
# Create Relative Value
#******************************************************************
factors$RV = list() factor.names$RV = 'Relative Value'

# relative
for(i in spl('EP,SP,CFP')) {
factors$RV[[paste('r',i,sep='')]] = factors$TV[[i]] / sector.mean(factors$TV[[i]], sectors) } # spreads, 5 Year Avg = 60 months for(i in spl('rEP,rSP,rCFP')) { factors$RV[[paste('s',i,sep='')]] = factors$RV[[i]] - apply(factors$RV[[i]], 2, function(x) if(all(is.na(x))) x else SMA(x,60) )
}

#*****************************************************************
# Profit Trends (Relative)
#******************************************************************
# relative
for(i in spl('RS,SA')) {
factors$PT[[paste('r',i,sep='')]] = factors$PT[[i]] / sector.mean(factors$PT[[i]], sectors) }  Next let’s create Composite Average factor and chart its performance.  #***************************************************************** # Normalize and add Average factor #****************************************************************** for(j in names(factors)) { factors[[j]] = normalize.normal(factors[[j]]) factors[[j]] = add.avg.factor(factors[[j]]) } #***************************************************************** # Create Composite Average factor #****************************************************************** factors.avg = list() for(j in names(factors)) factors.avg[[j]] = factors[[j]]$AVG

#*****************************************************************
# Backtest qutiles and qutile spread
#******************************************************************
plot.quantiles(factors.avg, next.month.ret, 'Average')

plot.bt.quantiles(factors.avg$AVG, next.month.ret, 'Composite Average', data)  Please note that I’m using the current Dow Jones index components through out the whole history. This is a problem because the Dow Jones index changed its composition a few times in the last 20 years. One of the signs of this bias is high spread for Small Size group of factors. It is not obvious that buying low priced stocks and selling high priced stocks should consistently make money; but it makes sense, if we know beforehand that that low priced companies will be part of Dow Jones index at some point. Instead of using a simple average of all factors to rank stocks, we can run cross sectional regression to estimate factor loading, and create Alpha model using estimated factor loading. For a complete description of this process, I recommend reading Commonality In The Determinants Of Expected Stock Returns by R. Haugen, N. Baker (1996) pages 8-9.  #***************************************************************** # Run cross sectional regression and create Alpha model #****************************************************************** nperiods = dim(factors.avg[[1]])[1] n = dim(factors.avg[[1]])[2] # get all factors factors.avg = list() for(j in names(factors)) factors.avg[[j]] = factors[[j]]$AVG

# create matrix for each factor, combine with returns
factors.matrix = abind(factors.avg, along = 3)
all.data = factors.matrix
all.data = abind(next.month.ret, all.data, along = 3)
dimnames(all.data)[[3]][1] = 'Ret'

# estimate betas
beta = matrix(double(), nperiods, dim(all.data)[3]-1)
colnames(beta) = dimnames(all.data)[[3]][-1]
rownames(beta) = dimnames(all.data)[[1]]

for(t in 12:(nperiods-1)) {
temp = all.data[t:t,,]
x = temp[,-1]
y = temp[,1]
beta[(t+1),] = lm(y~x-1)\$coefficients
}

# create expected return forecasts
alpha = matrix(double(), nperiods, n)
colnames(alpha) = dimnames(all.data)[[2]]
rownames(alpha) = dimnames(all.data)[[1]]
for(t in 18:(nperiods-1)) {
# average betas over the last 6 months
coef = colMeans(beta[(t-5):t,],na.rm=T)
alpha[t,] = rowSums(all.data[t,,-1] * t(repmat(coef, 1,n)), na.rm=T)
}

#*****************************************************************
# Backtest qutiles and qutile spread
#******************************************************************
layout(1:2)
temp = compute.quantiles(alpha, next.month.ret, plot=T)
plot.bt.quantiles(alpha, next.month.ret, 'Alpha', data)


The performance of the regression model lags the performance of the simple average of all factors to rank stocks. There are might be many reasons for this, but I want to show you one quick and rational way to increase performance of the regression model.

We do not restrict estimated factor loadings during regression; however, a negative coefficient for a Value factor does not make sense. I don’t want explicitly say that good Value companies should have lower ranks than bad Value companies, just because there is a negative coefficient for a Value factor. One possible solution is to only use factor loadings that are positive to construct Alpha score. Here is the modified code:

	for(t in 18:(nperiods-1)) {
# average betas over the last 6 months
coef = colMeans(beta[(t-5):t,],na.rm=T)

coef = iif(coef > 0, coef, 0)

alpha[t,] = rowSums(all.data[t,,-1] * t(repmat(coef, 1,n)), na.rm=T)
}


The regression model still lags the performance of the simple average of all factors to rank stocks.

In the next post I will show how to create a risk model and estimate risk.

To view the complete source code for this example, please have a look at the fm.all.factor.test() function in factor.model.test.r at github.