Why method of moments doesn’t always work

May 15, 2011
By

(This article was first published on Random Fluctuations, and kindly contributed to R-bloggers)

A number of years ago, someone asked me "why does my company need actuaries to fit curves, once I have the mean and standard deviation of my losses, isn't that enough?" I explained to him that not every distribution is completely determined by its mean and standard deviation (as the normal and lognormal are), and as at that point, I did not have "R" installed on my laptop, I demonstrated it to him in Excel. Having wanted to start blogging about "R", even ever so infrequently, I figured I'd toss together a little code to demonstrate.

The example I gave was to compare a gamma and a pareto distribution, each of which has mean 10,000 and a CV of 150% (making the standard deviation 15,000). I will spare all of you the algebra, but suffice to say, that using the Klugman-Panjer-Wilmot parameterization (which is used by most casualty actuaries in the past 20 years or so) the parameters of the gamma would be theta (R's scale) = 22500 and alpha (R's shape) = 4/9. The equivalent pareto would have theta (R's scale) = 26000 and alpha (R's shape) = 3.6.

Graphing the two (and Hadley, please forgive me for using default R' plotting, I left my ggplot book in the office; mea culpa) you can easily see how the distributions are rather different.

 

To make things easier for me, I used the actuar  package to do the graphing:

library(actuar)
curve
(dpareto(x, shape=3.6, scale=26000), from=0, to=100000, col="blue")
curve
(dgamma(x, shape=4/9, scale=22500), from=0, to=100000, add=TRUE, col="green")
Created by Pretty R at inside-R.org

Obviously, the tails of the distributions, and thus the survival function at a given loss size, is different for the two, notwithstanding their sharing identical first two moments. So, this was just a brief but effective visualization as to how the first two moments do not contain all the information needed to find a "best fit," and why we like to use distributional fitting methods (maximum likelihood, maximum spacing, various minimum distance metrics like Cramer-von Mises, etc.) to get a better understanding of the potential underlying loss processes.

To leave a comment for the author, please follow the link and comment on his blog: Random Fluctuations.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.