A number of years ago, someone asked me “why does my company need actuaries to fit curves, once I have the mean and standard deviation of my losses, isn’t that enough?” I explained to him that not every distribution is completely determined by its mean and standard deviation (as the normal and lognormal are), and as at that point, I did not have “R” installed on my laptop, I demonstrated it to him in Excel. Having wanted to start blogging about “R”, even ever so infrequently, I figured I’d toss together a little code to demonstrate.

The example I gave was to compare a gamma and a pareto distribution, each of which has mean 10,000 and a CV of 150% (making the standard deviation 15,000). I will spare all of you the algebra, but suffice to say, that using the Klugman-Panjer-Wilmot parameterization (which is used by most casualty actuaries in the past 20 years or so) the parameters of the gamma would be theta (R’s scale) = 22500 and alpha (R’s shape) = 4/9. The equivalent pareto would have theta (R’s scale) = 26000 and alpha (R’s shape) = 3.6.

Graphing the two (and Hadley, please forgive me for using default R’ plotting, I left my ggplot book in the office; *mea culpa*) you can easily see how the distributions are rather different.

To make things easier for me, I used the actuar package to do the graphing:

library(actuar)

curve(dpareto(x, shape=3.6, scale=26000), from=0, to=100000, col="blue")

curve(dgamma(x, shape=4/9, scale=22500), from=0, to=100000, add=TRUE, col="green")

Created by Pretty R at inside-R.org

Obviously, the tails of the distributions, and thus the survival function at a given loss size, is different for the two, notwithstanding their sharing identical first two moments. So, this was just a brief but effective visualization as to how the first two moments do not contain all the information needed to find a “best fit,” and why we like to use distributional fitting methods (maximum likelihood, maximum spacing, various minimum distance metrics like Cramer-von Mises, etc.) to get a better understanding of the potential underlying loss processes.

*Related*

To

**leave a comment** for the author, please follow the link and comment on his blog:

** Random Fluctuations**.

R-bloggers.com offers

**daily e-mail updates** about

R news and

tutorials on topics such as: visualization (

ggplot2,

Boxplots,

maps,

animation), programming (

RStudio,

Sweave,

LaTeX,

SQL,

Eclipse,

git,

hadoop,

Web Scraping) statistics (

regression,

PCA,

time series,

trading) and more...

If you got this far, why not

__subscribe for updates__ from the site? Choose your flavor:

e-mail,

twitter,

RSS, or

facebook...