Some Rcpp benchmarks

January 22, 2012
By

(This article was first published on Shige's Research Blog, and kindly contributed to R-bloggers)

I ran the Fibonacci number example from the Rcpp package on a number of computers and operating systems. Here are the results:

A. On my main computer (Core 2 Extreme 3.06GHz, 8 GB memory) running Ubuntu 10.04 (g++ 4.4.3):
        test replications elapsed relative user.self sys.self
3 fibRcpp(N)            1   0.148   1.0000      0.14     0.01
1    fibR(N)            1  87.078 588.3649     87.03     0.04
2   fibRC(N)            1  91.209 616.2770     91.14     0.07

B. Same computer running Windows Vista (g++ 4.5.0):

        test replications elapsed relative user.self sys.self
3 fibRcpp(N)            1    0.21   1.0000      0.21     0.00
1    fibR(N)            1   92.08 438.4762     90.47     0.05
2   fibRC(N)            1   94.39 449.4762     93.13     0.03


C. On my second laptop (Core 2 Duo 2.53GHz, 4 GB memory) running Windows 7 (g++ 4.5.0):

        test replications elapsed relative user.self sys.self
3 fibRcpp(N)            1    0.17   1.0000      0.17     0.00
1    fibR(N)            1   73.62 433.0588     73.47     0.00
2   fibRC(N)            1   74.27 436.8824     74.20     0.03

D. On the same computer running Revolution R Enterprise 5:
      test replications elapsed relative user.self sys.self
2 fibRC(N)            1   72.31 1.000000     72.09        0
1  fibR(N)            1   72.99 1.009404     72.79        0 

E. On my third laptop (Core 2 Duo 2.50GHz, 2 GB memory) running Mint Debian (g++ 4.6.2):
        test replications elapsed relative user.self sys.self
3 fibRcpp(N)            1   0.148   1.0000     0.148     0.00
1    fibR(N)            1  65.535 442.8041     65.328    0.200
2   fibRC(N)            1  65.664 443.6757     65.492    0.172


Why the faster computer performed worse, on both R and Rcpp versions?

To leave a comment for the author, please follow the link and comment on his blog: Shige's Research Blog.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.