Single variable optimization

January 1, 2011
By

(This article was first published on YGC » R, and kindly contributed to R-bloggers)

Optimization means to seek minima or maxima of a funtion within a given defined domain.

If a function reach its maxima or minima, the derivative at that point is approaching to 0. If we apply Newton-Raphson method for root finding to f’, we can get the optimizing f.

?View Code RSPLUS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
f2df <- function(fun) {
	fun.list = as.list(fun)
	var <- names(fun.list[1])
	fun.exp = fun.list[[2]] 
	diff.fun = D(fun.exp, var) 
	df = list(x=0, diff.fun) 
	df = as.function(df) 
	return(df)
}
 
newton <- function(fun, x0, tol=1e-7, niter=100) { 
	df = f2df(fun) 
	for (i in 1:niter) { 
		x = x0 - fun(x0)/df(x0) 
		if (abs(fun(x)) < tol) 
			return(x) 
		x0 = x      
	} 
	stop("exceeded allowed number of iterations") 
}
 
newton_optimize <- function(fun, x0, tol=1e-7, niter=100) {
	df <- f2df(fun)
	x = newton(df, x0, tol, niter)
	ddf <- f2df(df)
	if (ddf(x) > 0) {
		cat ("minima:\t", x, "\n")
	} else {
		cat ("maxima:\t", x, "\n")
	}
	return(x)
}


The golden-section method does not need f’. And it is similar to the root-bracketing technique for root finding.

?View Code RSPLUS
1
2
3
4
5
6
7
8
9
10
11
12
gSection <- function(f, x1, x2, x3, tol=1e-7) {
	r <- 2 - (1+sqrt(5))/2 
	x4 <- x2 + (x3-x2)*r
	if ( abs(x3-x1) < tol ){
		return(x2)
	}
	if (f(x4) < f(x2)) {
		gSection(f, x2, x4, x3, tol)
	} else {
		gSection(f, x4, x2, x1, tol)
	}
}
> f <- function(x) (x-1/3)^2
> newton_optimize(f, 0, tol=1e-7)
minima:  0.3333333
[1] 0.3333333
> gSection(f, 0,0.5,1)
[1] 0.3333333
> optimize(f, c(0,1), tol=1e-7)
$minimum
[1] 0.3333333

$objective
[1] 0

Related Posts

To leave a comment for the author, please follow the link and comment on his blog: YGC » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , ,

Comments are closed.