**M**y friends Randal Douc and Éric Moulines just published this new time series book with David Stoffer. (David also wrote *Time Series Analysis and its Applications* with Robert Shumway a year ago.) The books reflects well on the research of Randal and Éric over the past decade, namely convergence results on Markov chains for validating both inference in nonlinear time series and algorithms applied to those objects. The later includes MCMC, pMCMC, sequential Monte Carlo, particle filters, and the EM algorithm. While I am too close to the authors to write a balanced review for CHANCE (the book is under review by another researcher, before you ask!), I think this is an important book that reflects the state of the art in the rigorous study of those models. Obviously, the mathematical rigour advocated by the authors makes *Nonlinear Time Series* a rather advanced book (despite the authors’ reassuring statement that “nothing excessively deep is used”) more adequate for PhD students and researchers than starting graduates (and definitely not advised for self-study), but the availability of the R code (on the highly personal page of David Stoffer) comes to balance the mathematical bent of the book in the first and third parts. A great reference book!

Filed under: Books, R, Statistics, University life Tagged: book review, CHANCE, EM algorithm, Eric Moulines, Markov chains, MCMC, Monte Carlo Statistical Methods, nonlinear time series, particle filters, pMCMC, R, Randal Douc, sequential Monte Carlo, simulation, statistical inference, time series

*Related*

To

**leave a comment** for the author, please follow the link and comment on their blog:

** Xi'an's Og » R**.

R-bloggers.com offers

**daily e-mail updates** about

R news and

tutorials on topics such as:

Data science,

Big Data, R jobs, visualization (

ggplot2,

Boxplots,

maps,

animation), programming (

RStudio,

Sweave,

LaTeX,

SQL,

Eclipse,

git,

hadoop,

Web Scraping) statistics (

regression,

PCA,

time series,

trading) and more...

If you got this far, why not

__subscribe for updates__ from the site? Choose your flavor:

e-mail,

twitter,

RSS, or

facebook...