Mixed linear model approach adapted for genome-wide association studies

May 6, 2010

(This article was first published on Getting Genetics Done, and kindly contributed to R-bloggers)

A few weeks ago I covered an R package for efficient mixed model regression that is capable of simultaneously accounting for both population stratification and relatedness to compute unbiased estimates of standard errors and p-values for genetic association studies. Fitting linear mixed effects models on GWAS scale can be very time consiuming, however, and another group recently reported a method

To leave a comment for the author, please follow the link and comment on their blog: Getting Genetics Done.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , ,

Comments are closed.


Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)