Massively parallel database for analytics

July 22, 2009
By

(This article was first published on CYBAEA Data and Analysis, and kindly contributed to R-bloggers)

This is by far the best description of why traditional parallel databases (like Teradata, Greenplum et al.) is a evolutionary dead end. But much more than a theoretical discussion, they have built a solution which they call HadoopDB. It is based on Hadoop, PostgreSQL, and Hive and is completely Open Source. Alternative, column-based, backends to PostgreSQL are being implemented now. Read: Announcing release of HadoopDB.

See also:

To leave a comment for the author, please follow the link and comment on their blog: CYBAEA Data and Analysis.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Sponsors

Mango solutions





RStudio homepage

Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training



http://www.eoda.de









ODSC

CRC R books series













Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)