lm System on Nikkei with New Chart

August 15, 2011
By

(This article was first published on Timely Portfolio, and kindly contributed to R-bloggers)

I got a great idea from the zoo-overplot demo to make a very helpful visualization of system entry and exit.  Since the lm-based system presented in Unrequited lm Love is newest, I will use this system, but apply to the Nikkei 225 instead of the Russell 2000.

THIS IS STILL NOT INVESTMENT ADVICE, AND I TAKE NO RESPONSIBILITY FOR THE LOSSES THAT ARE VERY LIKELY IF YOU PURSUE THIS APPROACH.

Here is the new system visualization.

From TimelyPortfolio
From TimelyPortfolio
From TimelyPortfolio
From TimelyPortfolio
From TimelyPortfolio

R code (click to download):

#third version
#add another neat chart for visualization
#got idea from zoo-overplot demo   #second version
#this one actually has an additional mean reverting element
#for markets that have moved down so long entry is quicker
require(PerformanceAnalytics)
require(quantmod)   #set this up to get either FRED or Yahoo!Finance
#getSymbols("N225",src="FRED")
getSymbols("^N225",from="1896-01-01",to=Sys.Date())   N225 <- to.weekly(N225)[,4]
N225mean <- runMean(N225,n=30)
#index(N225) <- as.Date(index(N225))    width = 10
for (i in (width+1):NROW(N225)) {
linmod <- lm(N225[((i-width):i),1]~index(N225[((i-width):i)]))
ifelse(i==width+1,signal <- coredata(linmod$residuals[length(linmod$residuals)]),
signal <- rbind(signal,coredata(linmod$residuals[length(linmod$residuals)])))
ifelse(i==width+1,signal2 <- coredata(linmod$coefficients[2]),
signal2 <- rbind(signal2,coredata(linmod$coefficients[2])))
ifelse(i==width+1,signal3 <- cor(linmod$fitted.values,N225[((i-width):i),1]),
signal3 <- rbind(signal3,cor(linmod$fitted.values,N225[((i-width):i),1])))
}   signal <- as.xts(signal,order.by=index(N225[(width+1):NROW(N225)]))
signal2 <- as.xts(signal2,order.by=index(N225[(width+1):NROW(N225)]))
signal3 <- as.xts(signal3,order.by=index(N225[(width+1):NROW(N225)]))
signal4 <- ifelse(N225 > N225mean,1,0)   price_ret_signal <- merge(N225,lag(signal,k=1),
lag(signal2,k=1),
lag(signal3,k=1),
lag(signal4,k=1),
lag(ROC(N225,type="discrete",n=15),k=1),
ROC(N225,type="discrete",n=1))
price_ret_signal[,2] <- price_ret_signal[,2]/price_ret_signal[,1]
price_ret_signal[,3] <- price_ret_signal[,3]/price_ret_signal[,1]
ret <- ifelse((price_ret_signal[,5] == 1) | (price_ret_signal[,5] == 0 &
runMean(price_ret_signal[,3],n=50) > 0 & runMean(price_ret_signal[,2],n=10) < 0 ),
1, 0) * price_ret_signal[,7]
retCompare <- merge(ret, price_ret_signal[,7])
colnames(retCompare) <- c("Linear System", "BuyHold")
#jpeg(filename="performance summary.jpg",
# quality=100,width=6.25, height = 8, units="in",res=96)
charts.PerformanceSummary(retCompare,ylog=TRUE,cex.legend=1.2,
colorset=c("black","gray70"),main="N225 System Return Comparison")
#dev.off()
require(ggplot2)
df <- as.data.frame(na.omit(merge(price_ret_signal[,5],price_ret_signal[,7])))
colnames(df) <- c("signal_avg","return")
#jpeg(filename="boxplot by average.jpg",
# quality=100,width=6.25, height = 8, units="in",res=96)
ggplot(df,aes(x=factor(signal_avg),y=return)) + geom_boxplot()
#dev.off()
df2 <- as.data.frame(na.omit(merge(ifelse((price_ret_signal[,5] == 0 &
runMean(price_ret_signal[,3],n=50) > 0 & runSum(price_ret_signal[,2],n=10) < 0 ),
1, 0),price_ret_signal[,7])))
colnames(df2) <- c("signal_other","return")
#jpeg(filename="boxplot by other signal.jpg",
# quality=100,width=6.25, height = 8, units="in",res=96)
ggplot(df2,aes(x=factor(signal_other),y=return)) + geom_boxplot()
#dev.off()
df3 <- as.data.frame(na.omit(merge(ifelse((price_ret_signal[,5] == 1) | (price_ret_signal[,5] == 0 &
runMean(price_ret_signal[,3],n=50) > 0 & runMean(price_ret_signal[,2],n=10) < 0 ),
1, 0),price_ret_signal[,7])))
colnames(df3) <- c("signals_all","return")
#jpeg(filename="boxplot by long signal.jpg",
# quality=100,width=6.25, height = 8, units="in",res=96)
ggplot(df3,aes(x=factor(signals_all),y=return)) + geom_boxplot()
#dev.off()
#jpeg(filename="text plot of return and risk.jpg",
quality=100,width=6.25, height = 6.25, units="in",res=96)
textplot(rbind(table.AnnualizedReturns(retCompare),
table.DownsideRisk(retCompare)[c(1:3,7,11),]))
#dev.off()   #eliminate NA at start of return series
retCompare[is.na(retCompare)] <- 0
price_system <- merge(N225,ifelse((price_ret_signal[,5] == 1) |
(price_ret_signal[,5] == 0 &
runMean(price_ret_signal[,3],n=50) > 0 &
runMean(price_ret_signal[,2],n=10) < 0 ),
NA, 1),coredata(N225)[width+50]*cumprod(retCompare[,1]+1))
price_system[,2] <- price_system[,1]*price_system[,2]
colnames(price_system) <- c("In","Out","System")   #jpeg(filename="chartSeries with colored entry and exit.jpg",
# quality=100,width=6.25, height = 6.25, units="in",res=96)
chartSeries(price_system$System,theme="white",log=TRUE,up.col="black",
yrange=c(min(price_system[,c(1,3)]),max(price_system[,c(1,3)])),
TA="addTA(price_system$In,on=1,col=3);
addTA(price_system$Out,on=1,col=2)"
,
name="N225 Linear Model System")
#dev.off()

Created by Pretty R at inside-R.org

To leave a comment for the author, please follow the link and comment on their blog: Timely Portfolio.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: ,

Comments are closed.

Sponsors

Mango solutions



RStudio homepage



Zero Inflated Models and Generalized Linear Mixed Models with R

Dommino data lab

Quantide: statistical consulting and training



http://www.eoda.de







ODSC

ODSC

CRC R books series





Six Sigma Online Training





Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)