Latent Gaussian Models in Zürich [day 1]

February 4, 2011

(This article was first published on Xi'an's Og » R, and kindly contributed to R-bloggers)

An interesting first day (for me) at the Latent Gaussian Models workshop in Zürich. The workshop is obviously centred at the INLA approach, with Havard Rue giving a short course on Wednesday then a wide ranging tour of the applications and extensions of INLA this afternoon. Thanks to his efforts in making the method completely accessible for many models through an R package, using mode description commands like

inla(formula, family="weibull", data=Kidney, control.inla=list(h=0.001))

there is now a growing community of INLA users. As exemplified by the attendees to this workshop. Chris Holmes gave another of his inspirational talks this afternoon when defending the use of quasi-Monte Carlo methods in Bayes factor approximations. The model choice session this morning showed interesting directions, including a calibration of the Hellinger distance by Bernoulli distributions, while the application session this afternoon covered owls, bulls, and woolly mammoths. I even managed to speak about ABC model choice, Gaussian approximations of Ising models, stochastic volatility modelling, and grey codes for variable selection, before calling it a (full and fruitful) day!

Filed under: R, Statistics Tagged: Havard Rue, latent Gaussian models, quasi-Monte Carlo, R, R-INLA, Zurich

To leave a comment for the author, please follow the link and comment on their blog: Xi'an's Og » R. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , , , , ,

Comments are closed.


Mango solutions

RStudio homepage

Zero Inflated Models and Generalized Linear Mixed Models with R

Dommino data lab

Quantide: statistical consulting and training



CRC R books series

Six Sigma Online Training

Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)