**FishyOperationsCategory Archives: r**, and kindly contributed to R-bloggers)

R has great support for Holt-Winter filtering and forecasting. I sometimes use this functionality, *HoltWinter* & *predict.HoltWinter*, to forecast demand figures based on historical data. Using the HoltWinter functions in R is pretty straightforward.

Let's say our dataset looks as follows;

```
demand <- ts(BJsales, start = c(2000, 1), frequency = 12)
plot(demand)
```

Now I pass the timeseries object to *HoltWinter* and plot the fitted data.

```
hw <- HoltWinters(demand)
plot(hw)
```

Next, we calculate the forecast for 12 months with a confidence interval of .95 and plot the forecast together with the actual and fitted values.

```
forecast <- predict(hw, n.ahead = 12, prediction.interval = T, level = 0.95)
plot(hw, forecast)
```

As you can see, this is pretty easy to accomplish. However, as I use ggplot2 to visualize a lot of my analyses, I would like to be able to do this in ggplot2 in order to maintain a certain uniformity in terms of visualization.

Therefore, I wrote a little function which extracts some data from the *HoltWinter* and *predict.HoltWinter* objects and feeds this to ggplot2;

#HWplot.R library(ggplot2) library(reshape) HWplot<-function(ts_object, n.ahead=4, CI=.95, error.ribbon='green', line.size=1){ hw_object<-HoltWinters(ts_object) forecast<-predict(hw_object, n.ahead=n.ahead, prediction.interval=T, level=CI) for_values<-data.frame(time=round(time(forecast), 3), value_forecast=as.data.frame(forecast)$fit, dev=as.data.frame(forecast)$upr-as.data.frame(forecast)$fit) fitted_values<-data.frame(time=round(time(hw_object$fitted), 3), value_fitted=as.data.frame(hw_object$fitted)$xhat) actual_values<-data.frame(time=round(time(hw_object$x), 3), Actual=c(hw_object$x)) graphset<-merge(actual_values, fitted_values, by='time', all=TRUE) graphset<-merge(graphset, for_values, all=TRUE, by='time') graphset[is.na(graphset$dev), ]$dev<-0 graphset$Fitted<-c(rep(NA, NROW(graphset)-(NROW(for_values) + NROW(fitted_values))), fitted_values$value_fitted, for_values$value_forecast) graphset.melt<-melt(graphset[, c('time', 'Actual', 'Fitted')], id='time') p<-ggplot(graphset.melt, aes(x=time, y=value)) + geom_ribbon(data=graphset, aes(x=time, y=Fitted, ymin=Fitted-dev, ymax=Fitted + dev), alpha=.2, fill=error.ribbon) + geom_line(aes(colour=variable), size=line.size) + geom_vline(x=max(actual_values$time), lty=2) + xlab('Time') + ylab('Value') + opts(legend.position='bottom') + scale_colour_hue('') return(p) }

The above script is saved in a file called HWplot.R. If I load this file from R – via *source()* – I can directly call the function *HWplot*. The *HWplot* can be called as follows:

```
HWplot(ts_object, n.ahead=4, CI=.95, error.ribbon='green',line.size=1)
```

HWplot takes the following arguments;

*ts_object*: the timeseries data*n.ahead*: number of periods to forecast*CI*: confidence interval*error.ribbon*: colour of the error ribbon*line.size*: size of the lines

```
source("HWplot.R")
demand <- ts(BJsales, start = c(2000, 1), frequency = 12)
HWplot(demand, n.ahead = 12)
```

It's also very easy to adjust the graph after it is returned by the function;

```
graph <- HWplot(demand, n.ahead = 12, error.ribbon = "red")
# add a title
graph <- graph + opts(title = "An example Holt-Winters (gg)plot")
# change the x scale a little
graph <- graph + scale_x_continuous(breaks = seq(1998, 2015))
# change the y-axis title
graph <- graph + ylab("Demand ($)")
# change the colour of the lines
graph <- graph + scale_colour_brewer("Legend", palette = "Set1")
# the result:
graph
```

The HWplot R code: HWplot.R

The post Holt-Winters forecast using ggplot2 appeared first on FishyOperations.

**leave a comment**for the author, please follow the link and comment on his blog:

**FishyOperationsCategory Archives: r**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...