Fast Threshold Clustering Algorithm (FTCA) test

November 27, 2013
By

(This article was first published on Systematic Investor » R, and kindly contributed to R-bloggers)

Today I want to share the test and implementation for the Fast Threshold Clustering Algorithm (FTCA) created by David Varadi. This implementation was developed and contributed by Pierre Chretien, I only made minor updates.

Let’s first replicate the results from the Fast Threshold Clustering Algorithm (FTCA) post:

###############################################################################
# Load Systematic Investor Toolbox (SIT)
# http://systematicinvestor.wordpress.com/systematic-investor-toolbox/
###############################################################################
setInternet2(TRUE)
con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))
    source(con)
close(con)

	#*****************************************************************
	# Load historical data for ETFs
	#****************************************************************** 
	load.packages('quantmod')

	tickers = spl('XLY,XLP,XLE,XLF,XLV,XLI,XLB,XLK,XLU')
	
	data <- new.env()
	getSymbols(tickers, src = 'yahoo', from = '1900-01-01', env = data, auto.assign = T)
		for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)		
	bt.prep(data, align='keep.all')

	#*****************************************************************
	# Helper function to compute portfolio allocation additional stats
	#****************************************************************** 
	portfolio.allocation.custom.stats.clusters <- function(x,ia) {
		return(list(
			clusters.FTCA = cluster.group.FTCA(0.5)(ia)			
		))
	}
	
	#*****************************************************************
	# Find clusters
	#****************************************************************** 		
	periodicity = 'months'
	lookback.len = 252
		
	obj = portfolio.allocation.helper(data$prices, 
		periodicity = periodicity, lookback.len = lookback.len,
		min.risk.fns = list(EW=equal.weight.portfolio),
		custom.stats.fn = portfolio.allocation.custom.stats.clusters
	) 			
	
	clusters = obj$clusters.FTCA$EW	
	clusters['2012:05::']

The clusters are stable and match David’s results

           XLB XLE XLF XLI XLK XLP XLU XLV XLY
2012-05-31   1   1   1   1   1   1   1   1   1
2012-06-29   1   1   1   1   1   1   1   1   1
2012-07-31   1   1   1   1   1   1   1   1   1
2012-08-31   1   1   1   1   1   1   1   1   1
2012-09-28   1   1   1   1   1   1   1   1   1
2012-10-31   1   1   1   1   1   1   1   1   1
2012-11-30   2   2   2   2   2   2   1   2   2
2012-12-31   2   2   2   2   2   2   1   2   2
2013-01-31   2   2   2   2   2   2   1   2   2
2013-02-28   1   1   1   1   1   1   1   1   1
2013-03-28   1   1   1   1   1   1   1   1   1
2013-04-30   1   1   1   1   1   1   1   1   1
2013-05-31   1   1   1   1   1   1   1   1   1
2013-06-28   1   1   1   1   1   1   1   1   1
2013-07-31   1   1   1   1   1   1   1   1   1
2013-08-30   1   1   1   1   1   1   1   1   1
2013-09-30   1   1   1   1   1   1   1   1   1
2013-10-31   1   1   1   1   1   1   1   1   1
2013-11-26   1   1   1   1   1   1   1   1   1

Next let’s compare the Cluster Portfolio Allocation Algorithm using K-means and FTCA:

	#*****************************************************************
	# Code Strategies
	#****************************************************************** 					
	obj = portfolio.allocation.helper(data$prices, 
		periodicity = periodicity, lookback.len = lookback.len, 
		min.risk.fns = list(
			C.EW.kmeans = distribute.weights(equal.weight.portfolio, cluster.group.kmeans.90),
			C.EW.FTCA = distribute.weights(equal.weight.portfolio, cluster.group.FTCA(0.5))			
		)
	)
	
	models = create.strategies(obj, data)$models
						
	#*****************************************************************
	# Create Report
	#******************************************************************    
	barplot.with.labels(sapply(models, compute.turnover, data), 'Average Annual Portfolio Turnover')

Both clustering algorithms produced very similar results. One noticeable difference is turnover. Since the Fast Threshold Clustering Algorithm (FTCA) produced more stable groups, it had smaller turnover.

plot1

The full source code and example for the cluster.group.FTCA() function is available in strategy.r at github.

To leave a comment for the author, please follow the link and comment on their blog: Systematic Investor » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Sponsors

Mango solutions



RStudio homepage



Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training



http://www.eoda.de







ODSC

ODSC

CRC R books series











Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)