**Robert Grant's stats blog » R**, and kindly contributed to R-bloggers)

I have been amazed for a while that there is no major stats software offering pictograms. You know the sort of classic infographic I mean:

Well, I have been working on an R function to help with this. It’s at Github here and below. Here’s an example:

`man<-readPNG("man.png")`

`pictogram(icon=man,`

n=c(12,35,52),

grouplabels=c("dudes","chaps","lads"))

Simple, huh? You can also have more than one icon, although it’s up to you to keep them a sensible height:width ratio or ‘aspect’ to avoid distorting impressions.

`pictogram(icon=list(man,holly,monster),`

n=c(12,35,52),

grouplabels=c("men","holly","monsters"))

Suggestions? e-mail me or better still, pull them on Github. Happy pictogramming!

# requires image to be read in by readPNG or similar and supplied as "icon"

# To do: allow for non-integer n

pictogram<-function(icon,n,grouplabels="",

hicons=20,vspace=0.5,labprop=0.2,labelcex=1) {

if(is.list(icon)) {

licon<-icon

} else {

licon<-list(icon)

for (i in 2:length(n)) {

licon[[i]]<-icon

}

}

library(reshape)

sumn<-sum(n)

group<-untable(df=matrix((1:length(n)),ncol=1),num=n)

vicons<-ceiling(n/hicons)

allv<-sum(vicons)

tail<-n%%hicons

# dim[1] is the height, dim[2] the width:

devaspect<-dev.size(units="px")[1]/dev.size(units="px")[2]

xlength<-1

# get dims of all elements of licon, find greatest aspect and set ylength

getdim<-function(z) {

aspect<-dim(z)[1]/dim(z)[2]

return(aspect)

}

all.ylengths<-unlist(lapply(licon,getdim))

ylength<-max(all.ylengths)

all.ylengths<-untable(df=matrix(all.ylengths,ncol=1),num=n)

ytop<-allv*ylength

if(devaspect*hicons<allv) warning("Icons may extend above the top of the graph")

# vector of icons per row

iconrow<-as.vector(as.matrix(rbind(rep(hicons,length(vicons)),tail)))

# vector for how many times to repeat elements of iconrow

reprow<-as.vector(as.matrix(rbind((vicons-1),rep(1,length(vicons)))))

perrow<-untable(df=matrix(iconrow,ncol=1),num=reprow)

spacing<-NULL

for (i in 1:(length(n))) {

spacing<-c(spacing,rep((i-1)*vspace*ylength,n[i]))

}

y0<-spacing+(ylength*untable(df=matrix((1:allv)-1,ncol=1),num=perrow))

y1<-y0+all.ylengths

# there are more elegant ways to make x0, but for now...

x0<-NULL

for (i in 1:(length(perrow))) {

x0<-c(x0,(0:(perrow[i]-1)))

}

x1<-x0+xlength

leftplot<-floor(-(labprop*hicons))

plot(c(leftplot,hicons),c(0,(devaspect*hicons)),

type="n",bty="n",ylab="",xlab="",xaxt="n",yaxt="n")

lines(x=c(0,0),y=c(min(y0)-(ylength/2),max(y1)+(ylength/2)))

for (i in 1:sumn) {

rasterImage(image=licon[[group[i]]],xleft=x0[i],xright=x1[i],

ytop=y1[i],ybottom=y0[i])

}

# find positions for labels

ylabpos<-rep(NA,length(n))

for (i in 1:length(n)) {

ylabpos[i]<-(max(y1[group==i])+min(y0[group==i]))/2

}

text(x=leftplot/2,y=ylabpos,labels=grouplabels,cex=labelcex)

}

**leave a comment**for the author, please follow the link and comment on their blog:

**Robert Grant's stats blog » R**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...