Customizing Maps in R: spplot() and latticeExtra functions

December 15, 2010

(This article was first published on dylan's blog, and kindly contributed to R-bloggers)

I recently noticed the new latticeExtra page on R-forge, which contains many very interesting demos of new lattice-related functionality. There are strong opinions about the “best” graphics system in R (base graphics, grid graphics, lattice, ggplot, etc.)– I tend to use base graphics for simple figures and lattice for depicting multivariate or structured data. The sp package defines classes for storing spatial data in R, and contains several useful plotting methods such as the lattice-based spplot(). This function, and back-end helper functions, provide a generalized framework for plotting many kinds of spatial data. However, sometimes with great abstraction comes great ambiguity– many of the arguments that would otherwise allow fine tuning of the figure are buried in documentation for lattice functions. Examples are more fun than links to documentation, so I put together a couple of them below. They describe several strategies for placing and adjusting map legends– either automatically, or manually added with the update() function. The last example demonstrates an approach for over-plotting 2 rasters. All of the examples are based on the meuse data set, from the gstat package.

Extended spplot() examplesExtended spplot() examples

read more

To leave a comment for the author, please follow the link and comment on their blog: dylan's blog. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: ,

Comments are closed.


Mango solutions

RStudio homepage

Zero Inflated Models and Generalized Linear Mixed Models with R

Dommino data lab

Quantide: statistical consulting and training



CRC R books series

Six Sigma Online Training

Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)