C++11 versus R Standalone Random Number Generation Performance Comparison

March 1, 2014
By

(This article was first published on Lindons Log » R, and kindly contributed to R-bloggers)

If you are writing some C++ code with the intent of calling it from R or even developing it into a package you might wonder whether it is better to use the pseudo random number library native to C++11 or the R standalone library. On the one hand users of your package might have an outdated compiler which doesn’t support C++11 but on the other hand perhaps there are potential speedups to be won by using the library native to C++11. I decided to compare the performance of these two libraries.

#define MATHLIB_STANDALONE
#include <iostream>
#include <vector>
#include <random>
#include <chrono>
#include "Rmath.h"

int main(int argc, char *argv[])
{
        int ndraws=100000000;
        std::vector<double> Z(ndraws);
        std::mt19937 engine;
        std::normal_distribution<double> N(0,1);

        auto start = std::chrono::steady_clock::now();
        for(auto & z : Z ) {
                z=N(engine);
        }
        auto end = std::chrono::steady_clock::now();
        std::chrono::duration<double> elapsed=end-start;

        std::cout <<  elapsed.count() << " seconds - C++11" << std::endl;

        start = std::chrono::steady_clock::now();
        for(auto & z : Z ) {
                z=rnorm(0,1);
        }
        end = std::chrono::steady_clock::now();
        elapsed=end-start;

        std::cout <<  elapsed.count() << " seconds - R Standalone" << std::endl;

        return 0;
}

Compiling and run with:

[michael@michael coda]$ g++ normal.cpp -o normal -std=c++11 -O3 -lRmath
[michael@michael coda]$ ./normal 

Normal Generation

5.2252 seconds - C++11
6.0679 seconds - R Standalone

Gamma Generation

11.2132 seconds - C++11
12.4486 seconds - R Standalone

Cauchy

6.31157 seconds - C++11
6.35053 seconds - R Standalone

As expected the C++11 implementation is faster but not by a huge amount. As the computational cost of my code is dominated by other linear algebra procedures of O(n^3) I’d actually be willing to use the R standalone library because the syntax is more user friendly.

The post C++11 versus R Standalone Random Number Generation Performance Comparison appeared first on Lindons Log.

To leave a comment for the author, please follow the link and comment on his blog: Lindons Log » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.