Big Data Trees with Hadoop HDFS

December 4, 2012
By

(This article was first published on Revolutions, and kindly contributed to R-bloggers)

Last month's release of Revolution R Enterprise 6.1 added the capability to fit decision and regresson trees on large data sets (using a new parallel external memory algorithm included in the RevoScaleR package). It also introduced the possibility of applying this and the other big-data statistical methods of RevoScaleR to data files distributed in in Hadoop's HDFS file system*, using the Hadoop nodes themselves as the compute engine (with Revolution R Enterprise installed). Revolution Analytics' VP of Development Sue Ranney explained how this works in a recent webinar. I've embedded the slides below, and you can also watch the webinar recording on YouTube.

[*] Or to use the department of redundancy department-approved acronym, HHFDSFS

To leave a comment for the author, please follow the link and comment on his blog: Revolutions.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.