Bangalore workshop [ಬೆಂಗಳೂರು ಕಾರ್ಯಾಗಾರ]

July 30, 2014
By

(This article was first published on Xi'an's Og » R, and kindly contributed to R-bloggers)

mathdeptSecond day at the Indo-French Centre for Applied Mathematics and the workshop. Maybe not the most exciting day in terms of talks (as I missed the first two plenary sessions by (a) oversleeping and (b) running across the campus!). However I had a neat talk with another conference participant that led to [what I think are] interesting questions… (And a very good meal in a local restaurant as the guest house had not booked me for dinner!)

To wit: given a target like

\lambda \exp(-\lambda) \prod_{i=1}^n \dfrac{1-\exp(-\lambda y_i)}{\lambda}\quad (*)

the simulation of λ can be demarginalised into the simulation of

\pi (\lambda,\mathbf{z})\propto \lambda \exp(-\lambda) \prod_{i=1}^n \exp(-\lambda z_i) \mathbb{I}(z_i\le y_i)

where z is a latent (and artificial) variable. This means a Gibbs sampler simulating λ given z and z given λ can produce an outcome from the target (*). Interestingly, another completion is to consider that the zi‘s are U(0,yi) and to see the quantity

\pi(\lambda,\mathbf{z}) \propto \lambda \exp(-\lambda) \prod_{i=1}^n \exp(-\lambda z_i) \mathbb{I}(z_i\le y_i)

as an unbiased estimator of the target. What’s quite intriguing is that the quantity remains the same but with different motivations: (a) demarginalisation versus unbiasedness and (b) zi  Exp(λ) versus zi U(0,yi). The stationary is the same, as shown by the graph below, the core distributions are [formally] the same, … but the reasoning deeply differs.

twoversions

Obviously, since unbiased estimators of the likelihood can be justified by auxiliary variable arguments, this is not in fine a big surprise. Still, I had not though of the analogy between demarginalisation and unbiased likelihood estimation previously.Here are the R procedures if you are interested:

n=29
y=rexp(n)

T=10^5

#MCMC.1
lam=rep(1,T)

z=runif(n)*y
for (t in 1:T){

  lam[t]=rgamma(1,shap=2,rate=1+sum(z))
  z=-log(1-runif(n)*(1-exp(-lam[t]*y)))/lam[t]
  }

#MCMC.2
fam=rep(1,T)

z=runif(n)*y
for (t in 1:T){

  fam[t]=rgamma(1,shap=2,rate=1+sum(z))
  z=runif(n)*y
  }

Filed under: pictures, R, Running, Statistics, Travel, University life, Wines Tagged: auxiliary variable, Bangalore, demarginalisation, Gibbs sampler, IFCAM, Indian Institute of Science, unbiased estimation

To leave a comment for the author, please follow the link and comment on his blog: Xi'an's Og » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.