**S**econd day at the Indo-French Centre for Applied Mathematics and the workshop. Maybe not the most exciting day in terms of talks (as I missed the first two plenary sessions by (a) oversleeping and (b) running across the campus!). However I had a neat talk with another conference participant that led to [what I think are] interesting questions… (And a very good meal in a local restaurant as the guest house had not booked me for dinner!)

**T**o wit: given a target like

the simulation of λ can be demarginalised into the simulation of

where **z** is a latent (and artificial) variable. This means a Gibbs sampler simulating λ given z and z given λ can produce an outcome from the target (*). Interestingly, another completion is to consider that the z_{i}‘s are U(0,y_{i}) and to see the quantity

as an unbiased estimator of the target. What’s quite intriguing is that the quantity remains the same but with different motivations: (a) demarginalisation versus unbiasedness and (b) z_{i} Exp(λ) versus z_{i} U(0,y_{i}). The stationary is the same, as shown by the graph below, the core distributions are [formally] the same, … but the reasoning deeply differs.

**O**bviously, since unbiased estimators of the likelihood can be justified by auxiliary variable arguments, this is not in fine a big surprise. Still, I had not though of the analogy between demarginalisation and unbiased likelihood estimation previously.**H**ere are the R procedures if you are interested:

n=29
y=rexp(n)
T=10^5
#MCMC.1
lam=rep(1,T)
z=runif(n)*y
for (t in 1:T){
lam[t]=rgamma(1,shap=2,rate=1+sum(z))
z=-log(1-runif(n)*(1-exp(-lam[t]*y)))/lam[t]
}
#MCMC.2
fam=rep(1,T)
z=runif(n)*y
for (t in 1:T){
fam[t]=rgamma(1,shap=2,rate=1+sum(z))
z=runif(n)*y
}

Filed under: pictures, R, Running, Statistics, Travel, University life, Wines Tagged: auxiliary variable, Bangalore, demarginalisation, Gibbs sampler, IFCAM, Indian Institute of Science, unbiased estimation

*Related*

To

**leave a comment** for the author, please follow the link and comment on their blog:

** Xi'an's Og » R**.

R-bloggers.com offers

**daily e-mail updates** about

R news and

tutorials on topics such as:

Data science,

Big Data, R jobs, visualization (

ggplot2,

Boxplots,

maps,

animation), programming (

RStudio,

Sweave,

LaTeX,

SQL,

Eclipse,

git,

hadoop,

Web Scraping) statistics (

regression,

PCA,

time series,

trading) and more...

If you got this far, why not

__subscribe for updates__ from the site? Choose your flavor:

e-mail,

twitter,

RSS, or

facebook...