Blog Archives

SAS PROC MCMC example in R; Poisson Regression

November 16, 2014
By

In this post I will try to copy the calculations of SAS's PROC MCMC example 61.5 (Poisson Regression) into the various R solutions. In this post Jags, RStan, MCMCpack, LaplacesDemon solutions are shown. Compared to the first post in this series, rcppbugs and mcmc are not used. Rcppbugs has no poisson distribution and while I know how to...

Read more »

The completeness of online gun shooting victim counts

November 9, 2014
By
The completeness of online gun shooting victim counts

There are a number of on line efforts to register victims of shootings online. Shootingtracker tries to register all mass shootings, those with four or more victims. Slate had the gun death tally (GDT), gun deaths starting at Newtown, running thro...

Read more »

Tuning Laplaces Demon IV

November 2, 2014
By
Tuning Laplaces Demon IV

This is the last post of testing Laplaces Demon algorithms. In the last algorithms there are some which are completely skipped because they are not suitable for the problem. Reversible Jump is for variable selection. Sequential Metropolis-within-Gibbs,...

Read more »

Tuning Laplaces Demon III

October 26, 2014
By
Tuning Laplaces Demon III

This is the third post with LaplacesDemon tuning. same problem, different algorithms. For introduction and other code see this post. The current post takes algorithms Independence Metropolis to Reflective Slice Sampler.Independence MetropolisIndependen...

Read more »

Tuning Laplaces Demon II

October 19, 2014
By
Tuning Laplaces Demon II

I am continuing with my trying all algorithms of Laplaces Demon. It is actually quite a bit more work than I expected but I do find that some of the things get clearer. Now that I am close to the end of calculating this second batch I learned that ther...

Read more »

Tuning LaplacesDemon

October 12, 2014
By
Tuning LaplacesDemon

I was continuing with my Bayesian algorithms in R exercise. For these exercises I port SAS PROC MCMC examples to the various R solutions. However, the next example was logit model and that's just too simple, especially after last week's Jacobian for th...

Read more »

Bayes models from SAS PROC MIXED in R, post 2

October 5, 2014
By

This is my second post in converting SAS's PROC MCMC examples in R. The task in his week is determining the transformation parameter in a Box-Cox transformation. SAS only determines Lambda, but I am not so sure about that. What I used to do was get an ...

Read more »

Bayesian models in R

September 28, 2014
By
Bayesian models in R

There are many ways to run general Bayesian calculations in or from R. The best known are JAGS, OpenBUGS and STAN. Then some time ago Rasmus Bååth had a post Three ways to run Bayesian models in R in which he mentioned LaplacesDemon (not on CRAN) on top of those. A check of the Bayes task view...

Read more »

Trying dplyr on triathon data

September 21, 2014
By
Trying dplyr on triathon data

There was a triathlon in Almere last week, like every year since 1983. I pulled the data of all years to get some idea how things have changed in that sport. To get a visual I decided to plot the best 10% athletes. Then later I decided this was an idea...

Read more »

Trying a prefmap

September 14, 2014
By
Trying a prefmap

Preference mapping is a key technique in sensory and consumer research. It links the sensory perception on products to the liking of products and hence provides clues to the development of new, well tasting, products. Even though it is a key technique,...

Read more »

Sponsors

Mango solutions



RStudio homepage



Zero Inflated Models and Generalized Linear Mixed Models with R

Quantide: statistical consulting and training



http://www.eoda.de









ODSC

CRC R books series











Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)