Blog Archives

Portfolio tests of predicted returns

February 25, 2013
By
Portfolio tests of predicted returns

Exploring the quality of predictions using random portfolios and optimization. Previously “Simple tests of predicted returns” showed a few ways to look at expected returns at the asset level.  Here we move to the portfolio level. The previous post focused on correlation.  Win Vector Blog points out that gauging prediction quality using correlation can be … Continue reading...

Read more »

Simple tests of predicted returns

February 18, 2013
By
Simple tests of predicted returns

Some ways to explore how good a method of predicting returns is. Data and model The universe is 443 large cap US stocks that have data back to the beginning of 2004.  The daily (adjusted) close was used. The model that is used as an example is the default signal from the MACD function of … Continue reading...

Read more »

R for finance and other upcoming events

February 12, 2013
By
R for finance and other upcoming events

Featured R for Finance Workshop 2013 March 5-6 in London. The target audience are professionals and academics, who wish to learn the basics of the statistical software R and its use in Finance. The workshop is led by Ron Hochreiter, Pat Burns and Michael Sun. Details are on the Unicom website.  Please reference Burns Statistics … Continue reading...

Read more »

Variability of predicted portfolio volatility

February 11, 2013
By
Variability of predicted portfolio volatility

A prediction of a portfolio’s volatility is an estimate — how variable is that estimate? Data The universe is 453 large cap US stocks. The variance matrices are estimated with the daily returns in 2012. Variance estimation was done with Ledoit-Wolf shrinkage (shrinking towards equal correlation). Two sets of random portfolios were created.  In both … Continue reading...

Read more »

An infelicity with Value at Risk

February 4, 2013
By
An infelicity with Value at Risk

More risk does not necessarily mean bigger Value at Risk. Previously “The incoherence of risk coherence” suggested that the failure of Value at Risk (VaR) to be coherent is of little practical importance. Here we look at an attribute that is not a part of the definition of coherence yet is a desirable quality. Thought … Continue reading...

Read more »

The components garch model in the rugarch package

January 28, 2013
By
The components garch model in the rugarch package

How to fit and use the components model. Previously Related posts are: A practical introduction to garch modeling Variability of garch estimates garch estimation on impossibly long series Variance targeting in garch estimation The model The components model (created by Engle and Lee) generally works better than the more common garch(1,1) model.  Some hints about … Continue reading...

Read more »

Clustering and sector strength

January 21, 2013
By
Clustering and sector strength

An exploration of the usefulness of sectors. Previously This subject was discussed in “S&P 500 sector strengths”. Idea Stocks are put into groups based on the sector that the company is considered to be in.  Cluster analysis is a statistical technique that finds groups.  If sectors really move together, then clustering should recover sectors.  Will … Continue reading...

Read more »

Market predictions for year 2013

January 7, 2013
By
Market predictions for year 2013

Calibrations of 2013 predictions for 18 equity indices — plus some publicly available predictions. Orientation The distributions are an attempt to see the variability if there were no market-driving news for the whole year. Another way of thinking: mentally moving the distribution to center on a prediction gives a sense of the variability of results … Continue reading...

Read more »

Miles of iles

December 24, 2012
By
Miles of iles

An explanation of quartiles, quintiles deciles, and boxplots. Previously “Again with variability of long-short decile tests” and its predecessor discusses using deciles but doesn’t say what they are. The *iles These are concepts that have to do with approximately equally sized groups created from sorted data. There are 4 groups with quartiles, 5 with quintiles … Continue reading...

Read more »

A look at historical Value at Risk

December 17, 2012
By
A look at historical Value at Risk

Historical Value at Risk (VaR) is very popular because it is easy and intuitive: use the empirical distribution of some specific number of past returns for the portfolio. Previously “The estimation of Value at Risk and Expected Shortfall” included an R function to estimate historical VaR. Generating portfolios A useful tool to explore risk models … Continue reading...

Read more »

Sponsors

Mango solutions



RStudio homepage



Zero Inflated Models and Generalized Linear Mixed Models with R

Dommino data lab

Quantide: statistical consulting and training



http://www.eoda.de







ODSC

ODSC

CRC R books series





Six Sigma Online Training



Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)