The second round of group games ended last night (sadly with Sweden’s elimination). Here is what the last number of days has done to the plots.

R news and tutorials contributed by (552) R bloggers

Where do these come from? Since most statistical packages calculate these estimates automatically, it is not unreasonable to think that many researchers using applied econometrics are unfamiliar with the exact details of their computation. For the purposes of illustration, I am going to estimate different standard errors from a basic linear regression model: , using the

Exploring whether regression coefficients differ between groups is an important part of applied econometric research, and particularly for research with a policy based objective. For example, a government in a developing country may decide to introduce free school lunches in an effort to improve childhood health. However, if this treatment is known to only improve

Quantifying the success of government policies is clearly important. Randomized control trials, like those conducted by drug companies, are often described as the ‘gold-standard’ for policy evaluation. Under these, a policy is implemented in/to one area/group (treatment), but not in/to another (control). The difference in outcomes between the two areas or groups represents the effectiveness

Accounting for temporal dependence in econometric analysis is important, as the presence of temporal dependence violates the assumption that observations are independent units. Historically, much less attention has been paid to correcting for spatial dependence, which, if present, also violates this independence assumption. The comparability of temporal and spatial dependence is useful for illustrating why

The ivreg2 command is one of the most popular routines in Stata. The reason for this popularity is its simplicity. A one-line ivreg2 command generates not only the instrumental variable regression coefficients and their standard errors, but also a number of other statistics of interest. I have come across a number of functions in R

The common approach to estimating a binary dependent variable regression model is to use either the logit or probit model. Both are forms of generalized linear models (GLMs), which can be seen as modified linear regressions that allow the dependent variable to originate from non-normal distributions. The coefficients in a linear regression model are marginal