# A probability exercise on the Bernoulli distribution

July 18, 2009
By

(This article was first published on Statistic on aiR, and kindly contributed to R-bloggers)

What is the probability, flipping a coin 8 times, to obtain the sequence HHTTTHTT? (H = head; T= tail)

The theory teaches us that to solve this question, we can simply use the following formula:

$$f(x)=P(X=x)=B(n,p)=\begin{pmatrix}n\\ x \end{pmatrix} \cdot p^x \cdot q^{n-x}=\frac{n!}{x!(n-x)!}$$

To solve a problem like this, we can use in R the function dbinom(x, n, p). The coin flipping follow a binomial distribution, in which every event can be H or T. Suppose that T is the number of successes x (in this case x = 5), while n is the number independet experiments (in this case n = 8). The probability of success is p = 0.5. Put these data into R and get the answer:

dbinom(5, 8, 0.5)[1] 0.21875

The probability of obtaining that particular sequence is equal to 21,875%.
What probability we would have obtained if we had chosen H as the success (ie by imposing x = 3)?

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

Tags: , , ,