A probability exercise on the Bernoulli distribution

July 18, 2009
By

(This article was first published on Statistic on aiR, and kindly contributed to R-bloggers)

What is the probability, flipping a coin 8 times, to obtain the sequence HHTTTHTT? (H = head; T= tail)

The theory teaches us that to solve this question, we can simply use the following formula:

$$f(x)=P(X=x)=B(n,p)=\begin{pmatrix}n\\ x \end{pmatrix} \cdot p^x \cdot q^{n-x}=\frac{n!}{x!(n-x)!}$$

To solve a problem like this, we can use in R the function dbinom(x, n, p). The coin flipping follow a binomial distribution, in which every event can be H or T. Suppose that T is the number of successes x (in this case x = 5), while n is the number independet experiments (in this case n = 8). The probability of success is p = 0.5. Put these data into R and get the answer:


dbinom(5, 8, 0.5)
[1] 0.21875


The probability of obtaining that particular sequence is equal to 21,875%.
What probability we would have obtained if we had chosen H as the success (ie by imposing x = 3)?

To leave a comment for the author, please follow the link and comment on his blog: Statistic on aiR.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , ,

Comments are closed.