(This article was first published on

Following the trend of one liners for various languages (Haskell, Scala, Python), here's some examples in R**DataDebrief**, and kindly contributed to R-bloggers)Multiply Each Item in a List by 2

#lists

lapply(list(1:4),function(n){n*2})

# otherwise

(1:4)*2

Sum a List of Numbers

#listsVerify if Exists in a String

lapply(list(1:4),sum)

# otherwise

sum(unlist(list(1:4))) # or simply

sum(1:4)

wordlist = c("lambda", "data", "plot", "statistics", "R")

tweet = c("R is an integrated suite of software facilities for data manipulation, calculation and graphical display")

wordlist[wordlist %in% (c(unlist(strsplit(tweet,' ', fixed=T))))]

Read in a File

readLines("data.file", n=-1)

Happy Birthday to You!

lapply((1:4),function(x){ paste(c("Happy Birthday to ", ifelse(x!=3, "you", "dear Name")), sep="", collapse="")})

Filter list of numbers

n = c(49, 58, 76, 82, 88, 90); c(list(n[which(n<=60)]),list(n[which(n>60)]))Fetch and Parse an XML web service

library('XML'); xmlParseDoc('http://search.twitter.com/search.atom?&q=R-Project', asText=F)

Find minimum (or maximum) in a List

# for lists

lapply(list(c(14, 35, -7, 46, 98)), min, classes="numeric", how="replace")

# otherwise

min(unlist(list(14, 35, -7, 46, 98)))

# or simply

min(c(14, 35, -7, 46, 98))

max(c(14, 35, -7, 46, 98))

Parallel Processing

# http://cran.r-project.org/web/packages/doSMP/vignettes/gettingstartedSMP.pdf

# copy from Section 4 An example doSMP session

library(doSMP); w <- startWorkers(workerCount = 4); registerDoSMP(w); foreach(i = 1:3) %dopar% sqrt(i)

Sieve of Eratosthenes

##ok, this one is a little cheating

library('spuRs'); primesieve(c(),2:50)

To

**leave a comment**for the author, please follow the link and comment on his blog:**DataDebrief**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...