1-Month Reversal Strategy
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Today I want to show a simple example of the 1-Month Reversal Strategy. Each month we will buy 20% of loosers and short sell 20% of winners from the S&P 500 index. The loosers and winners are measured by prior 1-Month returns. I will use this post to set the stage for my next post that will show how Factor Attribution can boost performance of the 1-Month Reversal Strategy. Following is the references for my next post, in case you want to get a flavor, Short-Term Residual Reversal by D. Blitz, J. Huij, S. Lansdorp, M. Verbeek (2011) paper.
Let’s start by loading historical prices for all companies in the S&P 500 and create SPY and Equal Weight benchmarks using the Systematic Investor Toolbox:
###############################################################################
# Load Systematic Investor Toolbox (SIT)
# http://systematicinvestor.wordpress.com/systematic-investor-toolbox/
###############################################################################
setInternet2(TRUE)
con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))
source(con)
close(con)
#*****************************************************************
# Load historical data
#******************************************************************
load.packages('quantmod')
tickers = sp500.components()$tickers
data <- new.env()
getSymbols(tickers, src = 'yahoo', from = '1970-01-01', env = data, auto.assign = T)
# remove companies with less than 5 years of data
rm.index = which( sapply(ls(data), function(x) nrow(data[[x]])) < 1000 )
rm(list=names(rm.index), envir=data)
for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)
bt.prep(data, align='keep.all', dates='1994::')
tickers = data$symbolnames
data.spy <- new.env()
getSymbols('SPY', src = 'yahoo', from = '1970-01-01', env = data.spy, auto.assign = T)
bt.prep(data.spy, align='keep.all', dates='1994::')
#*****************************************************************
# Code Strategies
#******************************************************************
prices = data$prices
n = ncol(prices)
#*****************************************************************
# Setup monthly periods
#******************************************************************
periodicity = 'months'
period.ends = endpoints(data$prices, periodicity)
period.ends = period.ends[period.ends > 0]
prices = prices[period.ends, ]
#*****************************************************************
# Create Benchmarks, omit results for the first 36 months - to be consistent with Factor Attribution
#******************************************************************
models = list()
# SPY
data.spy$weight[] = NA
data.spy$weight[] = 1
data.spy$weight[1:period.ends[36],] = NA
models$spy = bt.run(data.spy)
# Equal Weight
data$weight[] = NA
data$weight[period.ends,] = ntop(prices, n)
data$weight[1:period.ends[36],] = NA
models$equal.weight = bt.run(data)
Next let’s group stocks into Quantiles based on 1-Month returns and create back-test for each Quantile. I will rely on the code in the Volatility Quantiles post to create Quantiles.
#*****************************************************************
# Create Reversal Quantiles
#******************************************************************
n.quantiles = 5
start.t = 1 + 36
quantiles = weights = coredata(prices) * NA
one.month = coredata(prices / mlag(prices))
for( t in start.t:nrow(weights) ) {
factor = as.vector(one.month[t,])
ranking = ceiling(n.quantiles * rank(factor, na.last = 'keep','first') / count(factor))
quantiles[t,] = ranking
weights[t,] = 1/tapply(rep(1,n), ranking, sum)[ranking]
}
quantiles = ifna(quantiles,0)
#*****************************************************************
# Create backtest for each Quintile
#******************************************************************
temp = weights * NA
for( i in 1:n.quantiles) {
temp[] = 0
temp[quantiles == i] = weights[quantiles == i]
data$weight[] = NA
data$weight[period.ends,] = temp
models[[ paste('M1_Q',i,sep='') ]] = bt.run(data, silent = T)
}
Finally, let’s construct Q1/Q5 spread and create summary performance report.
#*****************************************************************
# Create Q1-Q5 spread
#******************************************************************
temp[] = 0
temp[quantiles == 1] = weights[quantiles == 1]
temp[quantiles == n.quantiles] = -weights[quantiles == n.quantiles]
data$weight[] = NA
data$weight[period.ends,] = temp
models$spread = bt.run(data, silent = T)
#*****************************************************************
# Create Report
#******************************************************************
plotbt.custom.report.part1(models)
plotbt.custom.report.part1(models[spl('spy,equal.weight,spread')])
In the next post I will show how Factor Attribution can boost performance of the 1-Month Reversal Strategy using the methodology presented in the Short-Term Residual Reversal by D. Blitz, J. Huij, S. Lansdorp, M. Verbeek (2011) paper.
To view the complete source code for this example, please have a look at the bt.one.month.test() function in bt.test.r at github.
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

