Visualize pre-post comparison of intervention #rstats

August 19, 2014
By

(This article was first published on Strenge Jacke! » R, and kindly contributed to R-bloggers)

My sjPlot-package was just updated on CRAN, introducing a new function called sjp.emm.int to plot estimated marginal means (least-squares means) of linear models with interaction terms. Or: plotting adjusted means of an ANCOVA.

The idea to this function came up when we wanted to analyze the effect of an intervention (an educational programme on knowledge about mental disorders and associated stigma) between two groups: a “treatmeant” group (city) where a campaign on mental disorders was conducted and another city without this campaign. People from both cities were asked about their attitudes and knowledge about specific mental disorders at t0 before the campaign started in the one city. Some month later (t1), again people from both cities were asked the same questions. The intention was to see a) whether there were differences in knowledge and pro-social attidutes of people towards mental disorders and b) if the compaign successfully reduces stigma and increases knowledge.

To analyse these questions, we used an ANCOVA with knowledge and stigma score as dependent variables, “city” and “time” (t0 versus t1) as predictors and adjusted for covariates like age, sex, education etc. The estimated marginal means (or least-squares means) show you the differences of the dependent variable.

Here’s an example plot, quickly done with the sjp.emm.int function:
sjpemmint

Since the data is not publicly available, I’ve set an an RPubs-documentation with reproducable examples (though those example do not fit very well…).

The latest development snapshot of my package is available on GitHub.

BTW: You may have noticed that this function is quite similar to the sjp.lm.int function for visually interpreting interaction terms in linear models…

Tagged: ANCOVA, data visualization, ggplot, R, rstats, sjPlot, Statistik

To leave a comment for the author, please follow the link and comment on their blog: Strenge Jacke! » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Sponsors

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)