Here you will find daily news and tutorials about R, contributed by over 573 bloggers.
There are many ways to follow us - By e-mail:On Facebook: If you are an R blogger yourself you are invited to add your own R content feed to this site (Non-English R bloggers should add themselves- here)

The Sudoku puzzle in this Sunday edition of Le Monde was horrendously difficult, so after spending one hour with only 4 entries filled, I decided to feed it to the simulated annealing R program I wrote while visiting SAMSI last year. The R program reached the exact (and only) solution in about 6000 iterations, as shown (?) on the graph above. The Sudoku grid is defined in the R program by a 9×9 matrix s and the simulated annealing target function counts the number of duplicates

target=function(s){
tar=sum(apply(s,1,duplicated)+apply(s,2,duplicated))
for (r in 1:9){
bloa=(1:3)+3*(r-1)%%3
blob=(1:3)+3*trunc((r-1)/3)
tar=tar+sum(duplicated(as.vector(s[bloa,blob])))
}
return(tar)
}

After pruning out the deterministic entries (3 in my case!), the R program uses the temperature sequence

to weight the target function. and it runs over the 10,000 iterations random moves on some of the unallocated sites. On the graph above, the green dots correspond to accepted moves. The yellow dots correspond to accepted proposals to move a single site. These choices lead to a correct solution most of the time, the other cases most often producing a penalty of two. (Please note there is nothing optimised about my code. It takes ten to twenty minutes to produce the graph above. a far cry from the fastest Sudoku solvers!)