# recosystem: Recommender System Using Parallel Matrix Factorization

July 14, 2016
By

(This article was first published on Yixuan's Blog - R, and kindly contributed to R-bloggers)

# A Quick View of Recommender System

The main task of recommender system is to predict unknown entries in the
rating matrix based on observed values, as is shown in the table below:

Each cell with number in it is the rating given by some user on a specific
item, while those marked with question marks are unknown ratings that need
to be predicted. In some other literatures, this problem may be named
collaborative filtering, matrix completion, matrix recovery, etc.

A popular technique to solve the recommender system problem is the matrix
factorization method. The idea is to approximate the whole rating matrix
$R_{m\times n}$ by the product of two matrices of lower dimensions,
$P_{k\times m}$ and $Q_{k\times n}$, such that

Let $p_u$ be the $u$-th column of $P$, and $q_v$ be the
$v$-th column of $Q$, then the rating given by user $u$ on item $v$
would be predicted as $p’_u q_v$.

A typical solution for $P$ and $Q$ is given by the following optimization
problem [1; 2]:

where $(u,v)$ are locations of observed entries in $R$, $r_{u,v}$ is
the observed rating, $f$ is the loss function, and
$\mu_P,\mu_Q,\lambda_P,\lambda_Q$ are penalty parameters
to avoid overfitting.

The process of solving the matrices $P$ and $Q$ is called
model training, and the selection of penalty parameters is
parameter tuning. After obtaining $P$ and $Q$, we can then do
the prediction of $\hat{R}_{u,v}=p’_u q_v$.

# LIBMF and recosystem

LIBMF
is an open source C++ library for recommender system using parallel
matrix factorization, developed by
Dr. Chih-Jen Lin and his research group.
[3]

LIBMF is a parallelized library, meaning that
users can take advantage of multi-core CPUs to speed up the computation.
It also utilizes some advanced CPU features to further improve the performance.

recosystem
(Github) is an R wrapper of
the LIBMF library that inherits most of its features. Additionally, this
package provides a number of user-friendly R functions to
simplify data processing and model building. Also, unlike most other R packages
for statistical modeling that store the whole dataset and model object in
memory, LIBMF (and hence recosystem) can significantly reduce memory use,
for instance the constructed model that contains information for prediction
can be stored in the hard disk, and output result can also be directly
written into a file rather than be kept in memory.

# Overview of recosystem

The usage of recosystem is quite simple, mainly consisting of the following steps:

1. Create a model object (a Reference Class object in R) by calling Reco().
2. Specify the data source, either from a data file or from R objects in memory.
3. Train the model by calling the $train() method. A number of parameters can be set inside the function. 4. (Optionally) Call the $tune() method to select best tuning parameters
along a set of candidate values, in order to achieve better model performance.
5. (Optionally) Export the model via $output(), i.e. write the factorization matrices$P$and$Q$into files or return them as R objects. 6. Use the $predict() method to compute predicted values.

More details are covered in the package
vignette
and the help pages ?recosystem::Reco, ?recosystem::data_source, ?recosystem::train,
?recosystem::tune, ?recosystem::output, and ?recosystem::predict.

In the next section we will demonstrate how to use recosystem to analyze a
real movie recommendation data set.

# MovieLens Data

The MovieLens website collected many
MovieLens 1M Dataset
from grouplens,
which contains 1 million ratings from 6000 users and 4000 movies.

The rating data file, ratings.dat, looks like below:

1::1193::5::978300760
1::661::3::978302109
1::914::3::978301968
1::3408::4::978300275
1::2355::5::978824291
...


Each line has the format UserID::MovieID::Rating::Timestamp,
for example the first line says that User #1 gave Movie #1193 a rating of
5 at certain time point.

In recosystem, we will not use the time information, and the required data
format is UserID MovieID Rating, i.e., the columns are space-separated, and
columns after Rating will be ignored.
Therefore, we first transform the data file into a format that is supported by
recosystem. On Unix-like OS’s, we can use the sed command to replace ::
by a space:

sed -e 's/::/ /g' ratings.dat > ratings2.dat


Then we can start to train a recommender, as the following code shows:

library(recosystem)                                             # 1
r = Reco()                                                      # 2
train_set = data_file("ratings2.dat",  index1 = TRUE)           # 3
r$train(train_set, opts = list(dim = 20, # 4 costp_l1 = 0, costp_l2 = 0.01, # 5 costq_l1 = 0, costq_l2 = 0.01, # 6 niter = 10, # 7 nthread = 4)) # 8  In the code above, line 2 creates a model object such that the training function $train() can be called from it. Line 3 specifies the data
source – a data file on hard disk. Since in our data user ID and movie ID
start from 1 rather than 0, we use the index1 = TRUE options in the function.

The data can also be read from memory, if the UserID, MovieID and Rating
columns are stored as R vectors. Below shows an alternative way to provide
the training set.

dat = read.table("ratings2.dat", sep = " ", header = FALSE,
colClasses = c(rep("integer", 3), "NULL"))
train_set = data_memory(user_index = dat[, 1],
item_index = dat[, 2],
rating = dat[, 3], index1 = TRUE)


Line 4 to line 6 set the relevant model parameters: $k, \mu_P,\mu_Q,\lambda_P$,
and $\lambda_Q$, and Line 7 gives the number of iterations. Finally as I have
mentioned previously, LIBMF is a parallelized library, so
users can specify the number of threads that will be working
simultaneously via the nthread parameter. However, when nthread > 1,
the training result is NOT guaranteed to be reproducible, even if
a random seed is set.

Now everything looks good, except one inadequacy: the setting of tuning
parameters is ad-hoc, which may make the model sub-optimal.
To tune these parameters, we can call the $tune() function to test a set of candidate values and use cross validation to evaluate their performance. Below shows this process: opts_tune = r$tune(train_set,                                   # 9
opts = list(dim      = c(10, 20, 30),        # 10
costp_l2 = c(0.01, 0.1),         # 11
costq_l2 = c(0.01, 0.1),         # 12
costp_l1 = 0,                    # 13
costq_l1 = 0,                    # 14
lrate    = c(0.01, 0.1),         # 15
nthread  = 4,                    # 16
niter    = 10,                   # 17
verbose  = TRUE))                # 18
r$train(train_set, opts = c(opts_tune$min,                      # 19
niter = 100, nthread = 4))          # 20


The options in line 9 to line 15 are tuning parameters. The tuning function
will evaluate each combination of them and calculate the associated
cross-validated RMSE. The parameter set with the smallest RMSE will be contained
in the returned value, which can then be passed to $train() (Line 19-20). Finally, we can use the model object to do predictions. The code below shows how to predict ratings given by the first 20 users on the first 20 movies. user = 1:20 movie = 1:20 pred = expand.grid(user = user, movie = movie) test_set = data_memory(pred$user, pred$movie, index1 = TRUE) pred$rating = r\$predict(test_set, out_memory())

library(ggplot2)
ggplot(pred, aes(x = movie, y = user, fill = rating)) +
geom_raster() +
scale_fill_gradient("Rating", low = "#d6e685", high = "#1e6823") +
xlab("Movie ID") + ylab("User ID") +
coord_fixed() +
theme_bw(base_size = 22)


# Performance

To make the best use of recosystem, the parallel computing option nthread
should be used in the training and tuning step. Also, LIBMF and recosystem can
make use of some advanced CPU features to speed-up computation, if you
compile the package from source and turn on some compiler options.

To build recosystem, one needs a C++ compiler that supports
the C++11 standard. Then you can edit src/Makevars (src/Makevars.win for Windows system)
according to the following guideline:

• The default Makevars provides generic options that should apply to most
CPUs.
• If your CPU supports SSE3
(a list of supported CPUs), add
PKG_CPPFLAGS += -DUSESSE
PKG_CXXFLAGS += -msse3

PKG_CPPFLAGS += -DUSEAVX
PKG_CXXFLAGS += -mavx


After editing the Makevars file, run R CMD INSTALL recosystem to install recosystem.

The plot below shows the effect of parallel computing and the compiler option on
the performance of computation. The y axis is the elapsed time of the model tuning
procedure in the previous example.

## References

[1] Chin, Wei-Sheng, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. 2015a. A Fast Parallel Stochastic Gradient Method for Matrix Factorization in Shared Memory Systems. ACM TIST.

[2] Chin, Wei-Sheng, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. 2015b. A Learning-Rate Schedule for Stochastic Gradient Methods to Matrix Factorization. ACM TIST.

[3] Lin, Chih-Jen, Yu-Chin Juan, Yong Zhuang, and Wei-Sheng Chin. 2015. LIBMF: A Matrix-Factorization Library for Recommender Systems.

[4] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History
and Context
. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4,
Article 19 (December 2015), 19 pages.

To leave a comment for the author, please follow the link and comment on their blog: Yixuan's Blog - R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

# Never miss an update! Subscribe to R-bloggers to receive e-mails with the latest R posts.(You will not see this message again.)

Click here to close (This popup will not appear again)