(This article was first published on

**NIR-Quimiometría**, and kindly contributed to R-bloggers)As other softwares “R” has nice tools to look to the data before to develop the calibration.

Statistics for the “Y” variable (in this case octane number) like Maximun, Minimun,..,standard deviation,…are important:

**> library(ChemometricsWithR)**

**> data(gasoline)**

**> summary(gasoline$octane)**

Min. 1st Qu. Median Mean 3rd Qu. Max.

83.40 85.88 87.75 87.18 88.45 89.60

**> sd(gasoline$octane)**

[1] 1.530078

And of course the Histogram:

**> hist(gasoline$octane)**

*Bibliography:***Tutorials of :****Bjorn-Helge Mevik**

Norwegian University of Life Sciences

**Ron Wehrens**

Radboud University Nijmegen

Tweet

To

**leave a comment**for the author, please follow the link and comment on their blog:**NIR-Quimiometría**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...