Here you will find daily news and tutorials about R, contributed by hundreds of bloggers.
There are many ways to follow us - By e-mail:On Facebook: If you are an R blogger yourself you are invited to add your own R content feed to this site (Non-English R bloggers should add themselves- here)

[This article was first published on Strenge Jacke! » R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

This script was almost written on parallel to the sjPlotCorr script because it uses a very similar ggplot-base. However, there’s also a very nice posting over at Martin’s Bio Blog which show alternative approaches on plotting PCAs.

So, all you have to do is creating a data frame where each column represents one variable / case and pass this data frame to the function. This will result in something like this:

PCA of 7 variables resulting in 3 extracted factors (varimax rotation). Cronbach’s Alpha value of each “factor scale” printed at bottom.

The script automatically calculates the Cronbach’s Alpha value for each “factor scale”, assuming that the variables with the highest factor loading belongs to this factor. The amount of factors is calculated according to the Kaiser criterion. You can also create a plot of this calcuation by setting the parameter plotEigenvalues=TRUE.

The next small example shows two plots and uses a computed PCA as paramater: